Specific Process Knowledge/Thin film deposition/Deposition of Niobium Titanium Nitride: Difference between revisions

From LabAdviser
Jump to navigation Jump to search
No edit summary
Line 21: Line 21:
|-style="background:silver; color:black"
|-style="background:silver; color:black"
!
!
![[Specific Process Knowledge/Thin film deposition/Furnace LPCVD Nitride|LPCVD]]
![[Specific_Process_Knowledge/Thin_film_deposition/Cluster-based_multi-chamber_high_vacuum_sputtering_deposition_system|Sputter-System Metal-Nitride(PC3)]]
![[Specific Process Knowledge/Thin film deposition/PECVD|PECVD]]
![[Specific_Process_Knowledge/Thin_film_deposition/Cluster-based_multi-chamber_high_vacuum_sputtering_deposition_system|Sputter-System Metal-Nitride(PC3) and Sputter-System Metal-Oxide(PC1)]]
![[Specific Process Knowledge/Thin film deposition/Lesker|Lesker sputter system]]
![[Specific Process Knowledge/Thin film deposition/Lesker|Lesker sputter system]]
|-
|-
Line 30: Line 28:
|-style="background:WhiteSmoke; color:black"
|-style="background:WhiteSmoke; color:black"
!Generel description
!Generel description
|
*Low Pressure Chemical Vapour Deposition (LPCVD furnace process)
|
*Plasma Enhanced Chemical Vapour Deposition (PECVD process)
|
|
*Reactive sputtering
*Reactive sputtering

Revision as of 16:03, 5 October 2023


Feedback to this page: click here

Unless otherwise stated, this page is written by DTU Nanolab internal

Deposition of Niobium Titanium Nitride

Deposition of NbTiN can be done by reactive sputtering.

The preferred tool for this application is the Cluster-based multi-chamber high vacuum sputtering deposition system, commonly referred to as the 'Cluster Lesker.' The operating process is thoroughly documented and described in detail.:

Comparison of LPCVD, PECVD, and sputter systems for silicon nitride deposition

Sputter-System Metal-Nitride(PC3) Lesker sputter system
Generel description
  • Reactive sputtering
  • Pulsed DC reactive sputtering
  • Reactive HIPIMS (high-power impulse magnetron sputtering)
*Reactive sputtering
Stoichiometry
  • Stoichiometric nitride, Si3N4
  • Silicon rich (low stress) nitride, SRN
  • SixNyHz
  • SixOyNzHv

Silicon nitride can be doped with boron or phosphorus

  • SixNy (Sputter-System Metal-Nitride(PC3))
  • SixOyNz (Sputter-System Metal-Oxide(PC1))

Tunable composition

  • Unknown
Film thickness
  • Stoichiometric nitride: ~5 nm - ~230 nm
  • Silicon rich (low stress) nitride: ~5 nm - ~335 nm

Thicker nitride layers can be deposited over more runs (maximum two)

  • ~40 nm - 10 µm
  • limited by process time.
  • Deposition rate likely faster than Sputter-System (Lesker)
  • limited by process time.
  • Deposition rate ~ 1-5 nm/min
Process temperature
  • Stoichiometric nitride: 780 °C - 800 °C
  • Silicon rich (low stress) nitride: 810 °C - 845 °C
  • 300 °C
  • Up to 600 °C
  • Up to 400 °C
Step coverage
  • Good
  • Less good
  • some step coverage possible, especially by HIPIMS
  • some step coverage possible but amount unknown
Film quality
  • Deposition on both sides og the substrate
  • Dense film
  • Few defects
  • Deposition on one side of the substrate
  • Less dense film
  • Incorporation of hydrogen in the film
  • Deposition on one side of the substrate
  • Less dense film
  • Properties including density tunable (requires process development)
  • Deposition on one side of the substrate
  • unknown quality
  • likely O-contamination
KOH etch rate (80 oC)
  • Expected <1 Å/min
  • Dependent on recipe: ~1-10 Å/min
  • Unknown
  • Unknown
BHF etch rate
  • Unknown
  • Unknown
Batch size
  • 1-15 100 mm wafers (4" furnace), 1-25 100 mm wafers (6" furnace)
  • 1-25 150 mm wafers (only 6" furnace)
  • Several smaller samples
  • 1-7 50 mm wafers
  • 1 100 mm wafers
  • 1 150 mm wafer

Depending on what PECVD you use

  • many smaller samples
  • Up to 10*100 mm or 150 mm wafers
  • Several smaller samples
  • 1-several 50 mm wafers
  • 1*100 mm wafers
  • 1*150 mm wafer
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon nitride
  • Pure quartz (fused silica)

Processed wafers have to be RCA cleaned

  • Silicon
  • Silicon oxide (with boron, phosphorous)
  • Silicon nitrides (with boron, phosphorous)
  • Pure quartz (fused silica)
  • III-V materials (in PECVD4)
  • Small amount of metals (in PECVD3)
  • Almost any as long as they do not outgas and are not very toxic, see cross-contamination sheets
  • Any