Specific Process Knowledge/Thin film deposition/Deposition of Nickel: Difference between revisions

From LabAdviser
Sifkle (talk | contribs)
Reet (talk | contribs)
Line 6: Line 6:


== Nickel deposition ==
== Nickel deposition ==
Nickel can be deposited by e-beam evaporation, sputtering or electroplating. In the chart below you can compare the different deposition equipment.
Nickel can be deposited by e-beam evaporation or sputtering at DTU Nanolab. For electroplating you will have to contact other institutes at DTU, e.g., DTU Mechanical Engineering.  


*[[/Electroplating of nickel|Electroplating of nickel]]
Some process information is available here for e-beam evaporated films:
<!--*[[/Electroplating of nickel|Electroplating of nickel]]-->
*[[/Stress Wordentec Ni films|Stress in Wordentec Ni films: study here]].
*[[/Stress Wordentec Ni films|Stress in Wordentec Ni films: study here]].


 
In the chart below you can compare the different deposition equipment:


{| border="1" cellspacing="0" cellpadding="3"  
{| border="1" cellspacing="0" cellpadding="3"  
Line 20: Line 21:
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Lesker|Lesker]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Lesker|Lesker]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Cluster-based multi-chamber high vacuum sputtering deposition system|Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Cluster-based multi-chamber high vacuum sputtering deposition system|Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)]])
! Electroplating ([[Specific Process Knowledge/Thin film deposition/Electroplating-Ni|Electroplating-Ni]])
|-  
|-  


Line 30: Line 30:
|Sputter deposition of Nickel
|Sputter deposition of Nickel
|Sputter deposition of Nickel
|Sputter deposition of Nickel
|Electroplating of Nickel
|-
|-


Line 40: Line 39:
|RF Ar clean
|RF Ar clean
|RF Ar clean
|RF Ar clean
|None
|-
|-
|-style="background:WhiteSmoke; color:black"
|-style="background:WhiteSmoke; color:black"
Line 49: Line 47:
|10 Å to 5000 Å **
|10 Å to 5000 Å **
|10 Å to 5000 Å **
|10 Å to 5000 Å **
|~ 20 µm to ~ 1000 µm
|-
|-
|-style="background:LightGrey; color:black"
|-style="background:LightGrey; color:black"
Line 58: Line 55:
|Depends on process parameters, about 1 Å/s  
|Depends on process parameters, about 1 Å/s  
|Depends on process parameters, at least ~ 4 Å/s, see conditions [[Specific_Process_Knowledge/Thin_film_deposition/Cluster-based_multi-chamber_high_vacuum_sputtering_deposition_system#Standard_recipe_performance|here]]
|Depends on process parameters, at least ~ 4 Å/s, see conditions [[Specific_Process_Knowledge/Thin_film_deposition/Cluster-based_multi-chamber_high_vacuum_sputtering_deposition_system#Standard_recipe_performance|here]]
|~ 10-250 Å/s


|-style="background:WhiteSmoke; color:black"
|-style="background:WhiteSmoke; color:black"
Line 78: Line 74:
*Up to 10x4" or 6" wafers
*Up to 10x4" or 6" wafers
*Many smaller pieces
*Many smaller pieces
|
*1x2" wafer or
*1x4" wafer or
*1x6" wafer


|-
|-
Line 110: Line 102:
|
|
*Almost any that do not outgas. Check the cross-contamination sheet in Labmanager.
*Almost any that do not outgas. Check the cross-contamination sheet in Labmanager.
|
 
Base materials:<br>
*Silicon
*Polymers with Tg > 75°C
*Metals (bulk)
*Cross-linked or hard baked resists supported by one of the above mentioned materials
Seed metals:<br>
* NiV (75 - 100 nm recommended)
* Ti (~5 nm) + Au (75-100 nm recommended)
* Cr (~5 nm) + Au (75-100 nm recommended)
* TiW
* Cr
|-
|-
|-
|-
Line 133: Line 114:
|
|
*May use high-strength magnet for deposition
*May use high-strength magnet for deposition
|
*Sample must be compatible with plating bath (pH = 3,65 and T = 52°C). Seed metal necessary.
|-
|-



Revision as of 09:45, 9 June 2023

Feedback to this page: click here

Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.

All links to Labmanager Including APV and QC requires login.

Nickel deposition

Nickel can be deposited by e-beam evaporation or sputtering at DTU Nanolab. For electroplating you will have to contact other institutes at DTU, e.g., DTU Mechanical Engineering.

Some process information is available here for e-beam evaporated films:

In the chart below you can compare the different deposition equipment:

E-beam evaporation (Temescal) E-beam evaporation (Wordentec) Sputter deposition (Lesker) Sputter deposition (Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3))
General description E-beam deposition of Nickel E-beam deposition of Nickel Sputter deposition of Nickel Sputter deposition of Nickel
Pre-clean Ar ion bombardment RF Ar clean RF Ar clean
Layer thickness 10 Å to 1 µm * 10 Å to 1 µm * 10 Å to 5000 Å ** 10 Å to 5000 Å **
Deposition rate 2-10 Å/s 10-15 Å/s Depends on process parameters, about 1 Å/s Depends on process parameters, at least ~ 4 Å/s, see conditions here
Batch size
  • Up to 4x6" wafers
  • Up to 3x8" wafers (ask for holder)
  • Many smaller pieces
  • 24x2" wafers or
  • 6x4" wafers or
  • 6x6" wafers
  • Pieces or
  • 1x4" wafer or
  • 1x6" wafer
  • Up to 10x4" or 6" wafers
  • Many smaller pieces
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon nitride
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Almost any that do not outgas.
  • Almost any that do not outgas. Check the cross-contamination sheet in Labmanager.
Comment
  • May use high-strength magnet for deposition.
  • May use high-strength magnet for deposition

* To deposit a cumulative thickness above 600 nm permission is required from metal@nanolab.dtu.dk to ensure enough material is present in the machine


** To deposit a cumulative thickness above 200 nm permission is required from metal@nanolab.dtu.dk to ensure enough material is present in the machine

Quality control of e-beam evaporated Ni films

Quality control (QC) for Wordentec
QC Recipe: Process 5
Deposition rate 10 Å/s
Thickness 100 nm
Pressure Below 4*10-6 mbar
QC limits Wordentec
Measured average thickness (Å) ± 10 %
Lowest accepted deposition rate (Å/s) 6 Å/s

Thickness is measured in 5 points with a stylus profiler.


Quality control (QC) for the Temescal
QC Recipe: Standard recipes/Ni
Deposition rate 10 Å/s
Thickness 100 nm
Pressure Below 1*10-6 mbar
QC limits Temescal
Deposition rate deviation ± 20 %
Measured average thickness ± 10 %
Thickness deviation across a 4" wafer ± 5 %

Thickness is measured in 5 points with a stylus profiler.
Additionally we examine the newly deposited films for particles using the particle scanner (if available, otherwise we use the Jenatech microscope in darkfield mode) and we monitor the sheet resistance of the Ti/Au films.