Specific Process Knowledge/Back-end processing/Laser Micromachining Tool: Difference between revisions

From LabAdviser
Chasil (talk | contribs)
Rkch (talk | contribs)
No edit summary
 
(46 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:danchipsupport@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php?title=Specific_Process_Knowledge/Back-end_processing/Laser_Micromachining_Tool click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20https://labadviser.nanolab.dtu.dk//index.php?title=Specific_Process_Knowledge/Back-end_processing/Laser_Micromachining_Tool click here]'''
<!-- Replace "http://labadviser.danchip.dtu.dk/..." wih the link to the Labadviser page-->
<!-- Replace "http://labadviser.danchip.dtu.dk/..." wih the link to the Labadviser page-->
'''Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.'''
'''All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.'''


==Laser Micromachining Tool ==
==Laser Micromachining Tool ==


[[File:Laser_Micromachining_Tool_main_parts_drawing.jpg|400px|thumb|Lasertool microSTRUCT vario (3D-Micromac AG)]]
[[File:LaserTool_photo.png|400px|thumb|Lasertool microSTRUCT vario (3D-Micromac AG)]]
[[File:Inside_Camera_liveview.jpg|400px|thumb|Inside lasertool]]
[[File:Inside_Camera_liveview.jpg|400px|thumb|Inside lasertool]]


Line 16: Line 20:
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=309]
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=309]


It is equipped with 2 high power lasers:
It is equipped with 2 high power lasers :


* a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [http://www.time-bandwidth.com/upload/press/weingartenlasertechnikjournalvol6issue3p51.pdf] ) with a pulse repetition rate from 200kHz up to 8000kHz.  
* a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [http://www.time-bandwidth.com/upload/press/weingartenlasertechnikjournalvol6issue3p51.pdf] ) with a pulse repetition rate from 200kHz up to 8000kHz.  
*: and a
*: and a
* a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz.
* a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz (currently out of use).


The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc.
The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc.
It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.
It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.


The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info [[Specific_Process_Knowledge/Lithography/UVLithography/Mask_Design| here]].
The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info [[Specific_Process_Knowledge/Pattern_Design| here]].


== Technical specifications ==
== Technical specifications ==


*[[/Spot size and optics|Spot size and optics]]
*[[/Spot size and optics|Spot size and optics]]
*[[/Optic availability|Optic availability]]
*[[/Lasers sources|Lasers sources]]
 
 
'''Frequency and wavelength'''
{| {{table}}
| align="center" |
{| border="1" cellspacing="1" cellpadding="2"  align="center" style="width:500px"
! Picosecond
! 1064nm
! 532nm
! 355nm
|-
| Frequency min
|200 kHz
|200 kHz
|200 kHz
|-
| Frequency max
|8000 kHz
|8000 kHz
|8000 kHz
|}
{| border="1" cellspacing="2" cellpadding="2"  align="center" style="width:270px"
! Nanosecond
! 1064nm
|-
| Frequency min
|10kHz
|-
|-
| Frequency max
|100kHz
|}
|-
|}


== Performances ==  
== Performances ==  


{| border="2" cellspacing="0" cellpadding="10" width="75%"
{| border="2" cellspacing="0" cellpadding="10" width="70%"
|-
|-
!style="background:silver; color:black;" align="left"|Purpose  
!style="background:silver; color:black;" align="left"|Purpose  
Line 88: Line 58:
* Red (165x165mm)
* Red (165x165mm)
|-
|-
|style="background:LightGrey; color:black" |[[media:101014_AverageOutputPower.jpg|Output power @100%(laser TB width – picosecond)]]
|style="background:LightGrey; color:black"|Max. output power @100%(laser TB width – picosecond)  
 
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
{| {{table}}
{| {{table}}
| align="left"|
| align="left"|
{| border="1" cellspacing="1" cellpadding="2"  align="center" style="width:500px"  
{| border="1" cellspacing="1" cellpadding="2"  align="left" style="width:600px"  
! Values from SAT (Nov. 2012)
! Values from SAT (Nov. 2012)
! Previous values (May 2014)
! Current values (Dec. 2018)
! Actual values (Oct 2014)
|-
|-
| Repetition rate : 200kHz
| Repetition rate : 200kHz
* 355nm : 11,93W
* 355nm, F103mm : 11,93W
* 532nm : 24,62W
* 532nm, F255mm : 24,62W
* 1064nm : 34,24W
* 1064nm, F255mm : 34,24W


Repetition rate : 1000 kHz
Repetition rate : 1000 kHz


* 355nm : 4,28W
* 355nm, F103mm : 4,28W
* 532nm : 18,40W
* 532nm, F255mm : 18,40W
* 1064nm : 40,09W
* 1064nm, F255mm: 40,09W


Repetition rate : 8000 kHz
Repetition rate : 8000 kHz


* 355nm : 0,26W
* 355nm, F103mm : 0,26W
* 532nm : 4,82W
* 532nm, F255mm  : 4,82W
* 1064nm : 42,40W
* 1064nm, F255mm : 42,40W
| Repetition rate : 200kHz
* 355nm : 6,7W
* 532nm : 17,62W
* 1064nm : 27,7W
 
Repetition rate : 1000 kHz
 
* 355nm : 2,03W
* 532nm : 12,78W
* 1064nm : 32,1W


Repetition rate : 8000 kHz
| Repetition rate : 200 kHz
 
* 355nm, F103mm : 15 W
* 355nm :0,061W
* 532nm, F255mm: not measured
* 532nm : 3,12W
* 1064nm, F255mm: 32 W
* 1064nm : 33,67W
| Repetition rate : 200kHz
* 355nm : 2,86W
* 532nm : 20,716 W
* 1064nm : 24,98


Repetition rate : 1000 kHz
Repetition rate : 1000 kHz


* 355nm : 0,98
* 355nm, F103mm : 5,5 W
* 532nm : 8,031
* 532nm : not measured
* 1064nm : 29,44
* 1064nm : 38 W


Repetition rate : 8000 kHz
Repetition rate : 8000 kHz


* 355nm :0,04
* 355nm, F103mm: 0,3 W
* 532nm : 1,954
* 532nm, F255mm: not measured
* 1064nm : 30,67
* 1064nm, F255mm: 41 W
|}
|}
|}
* [[media:AvgPower_1064nm_F255mm.png|Graph 1064nm, F255nm Avg. output power]]
* [[media:AvgPower_355nm_F103mm.png|Graph 355nm, F103nm Avg. output power]]
|}
|}
|-
|-
Line 153: Line 108:
|style="background:LightGrey; color:black"|[[media:140618_AverageOutputPower_IPG.jpg|Output power@100%(laser IPG – nanosecond)]]
|style="background:LightGrey; color:black"|[[media:140618_AverageOutputPower_IPG.jpg|Output power@100%(laser IPG – nanosecond)]]
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Repetition rate : 10kHz to 100kHz
Repetition rate : 10kHz to 100kHz (Currently non-available)


* 1064nm : 80W
* 1064nm : 80W
|-
|-
!style="background:silver; color:black" align="left" valign="top" rowspan="1"|Substrates
!style="background:silver; color:black" align="left" valign="top" rowspan="2"|Substrates
|style="background:LightGrey; color:black"|Material allowed  
|style="background:LightGrey; color:black"|Material allowed  
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Line 168: Line 123:
* Fused silicate (quartz)
* Fused silicate (quartz)
* Topas
* Topas
 
* Nickel
* Tungsten
* if not in the list ask machine responsible
|-
|style="background:LightGrey; color:black"|Material NOT allowed
|style="background:WhiteSmoke; color:black"|
* PTFE (teflon)
|-
|-
!style="background:silver; color:black" align="left" valign="top" rowspan="1"|Parameters
!style="background:silver; color:black" align="left" valign="top" rowspan="1"|Parameters
| style="background:LightGrey; color:black"|Characteristics [[Image:section under construction.jpg|70px]]
| style="background:LightGrey; color:black"|Characteristics  
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
 
* Speed up to 2000 mm/s
{| {{table}}
* M2 factor : <1.3  
| align="center" |
* Beam shape : Gaussian
{| border="1" cellspacing="1" cellpadding="2"  align="center" style="width:500px"
{|  
! Parameters
! Min
! Max
|-
| Speed
| -
| 2000mm/s
|-
| [[/fluence|Fluence]]
| 0,01J/cm2
| 26J/cm2
|-
| Spot size
| 10µm
| 74µm
|-
|[[/PulseEnergy|Pulse energy]]
| 0,07µJ (TB)
| 140µJ (TB) / 800 µJ (IPG)
|-
| Pulse duration
|10,4ps (TB)
| 100ns (IPG)
|-
| Peak irradiance
| 4GW/cm2
| 5400 GW/cm2
|-
| M^2
| -
| 1,3
|}
|-
|-
|}
|}
| align="center" |
|}
|}


Line 221: Line 152:
=== Results from default process [[Image:section under construction.jpg|70px]] ===
=== Results from default process [[Image:section under construction.jpg|70px]] ===


*[[/Silicon cutting and milling|Silicon cutting and milling]]
*[[/Borofloat cutting and milling|Borofloat glass cutting and milling]]
*[[/Quartz cutting and milling|Quartz cutting and milling]]
*[[/Aluminium cutting and milling|Aluminium cutting and milling]]
*[[/Nickel cutting and milling|Nickel cutting and milling]] (for [[Specific Process Knowledge/Back-end processing/Polymer Injection Molder|Polymer Injection Molder]])
*[[../Mask making|Mask making]]
*[[../Mask making|Mask making]]


Line 394: Line 320:
| 20%
| 20%
| 0,55 W
| 0,55 W
| 50 mm/s
| 500 mm/s
| 1 burst
| 1 burst
| 0
| 0
Line 409: Line 335:
| 25%
| 25%
| 0,55 W
| 0,55 W
| 50 mm/s
| 500 mm/s
| 1 burst
| 1 burst
| 0
| 0
| 22
| 35
|  
|  
|  
|  
Line 424: Line 350:
| 25%
| 25%
| 0,55 W
| 0,55 W
| 50 mm/s
| 500 mm/s
| 1 burst
| 1 burst
| 0
| 0
| 50
| 72
|  
|  
|  
|  

Latest revision as of 15:11, 6 February 2023

Feedback to this page: click here

Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.

All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.

Laser Micromachining Tool

Lasertool microSTRUCT vario (3D-Micromac AG)
Inside lasertool

The Laser Micromachining Tool is a microSTRUCT vario from the company 3D-Micromac AG.

The machine is located in the basement of building 346 under the cleanroom.

The user manual(s), user APV(s), technical information and contact information can be found in LabManager: [1]

It is equipped with 2 high power lasers :

  • a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [2] ) with a pulse repetition rate from 200kHz up to 8000kHz.
    and a
  • a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz (currently out of use).

The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc. It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.

The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info here.

Technical specifications

Performances

Purpose Patterning, milling and dicing substrates Mainly for patterning, milling, drilling with high aspect ratio and dicing substrate with micrometric shapes and above (> 10µm)
Performances Resolution

Down to 10µm with the blue laser (355nm). Depending on the depth wished.

Maximum writing area

Depends of the optics. Max size :

  • Blue (145x145mm)
  • Green ( 165x165mm)
  • Red (165x165mm)
Max. output power @100%(laser TB width – picosecond)
Values from SAT (Nov. 2012) Current values (Dec. 2018)
Repetition rate : 200kHz
  • 355nm, F103mm : 11,93W
  • 532nm, F255mm : 24,62W
  • 1064nm, F255mm : 34,24W

Repetition rate : 1000 kHz

  • 355nm, F103mm : 4,28W
  • 532nm, F255mm : 18,40W
  • 1064nm, F255mm: 40,09W

Repetition rate : 8000 kHz

  • 355nm, F103mm : 0,26W
  • 532nm, F255mm  : 4,82W
  • 1064nm, F255mm : 42,40W
Repetition rate : 200 kHz
  • 355nm, F103mm : 15 W
  • 532nm, F255mm: not measured
  • 1064nm, F255mm: 32 W

Repetition rate : 1000 kHz

  • 355nm, F103mm : 5,5 W
  • 532nm : not measured
  • 1064nm : 38 W

Repetition rate : 8000 kHz

  • 355nm, F103mm: 0,3 W
  • 532nm, F255mm: not measured
  • 1064nm, F255mm: 41 W
Output power@100%(laser IPG – nanosecond)

Repetition rate : 10kHz to 100kHz (Currently non-available)

  • 1064nm : 80W
Substrates Material allowed
  • Silicon
  • Silicon + Si3N4 and/or SiO2
  • Silicon with resist
  • Aluminum
  • Steel
  • Pyrex
  • Fused silicate (quartz)
  • Topas
  • Nickel
  • Tungsten
  • if not in the list ask machine responsible
Material NOT allowed
  • PTFE (teflon)
Parameters Characteristics
  • Speed up to 2000 mm/s
  • M2 factor : <1.3
  • Beam shape : Gaussian

Process information

Result from the acceptance test

Results from default process

Laser Processing parameters

The following parameters provide information about the necessary values for machining different materials. However, most parameters can be further optimized in order to reduce the amount of debris and/or reduce the process time.


Material Optics Frequency Intensity Power measured @10% Writing speed Number of burst Number of Z-offset Number of iteration Number of parallel lines Gap in between line Parameter file Comments
Silicon 525µm Green(532nm/255mm) 200 kHz 100% 0,57 W 50 mm/s 1 burst none 4 1 N/A Silicon dicing green parameters Easily break silicon in cristal plan. Depth of the groove : 25µm
Silicon (525µm) + Si3N4 (150nm up to 1,2µm) OR SiO2 (150nm up to 320nm) Red (1064nm/255mm) 200 kHz 100% 2,8 W 1000 mm/s 3 bursts 1 (-0,3mm) 350/100 4 50 µm Silicon nitride cutting parameters Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing. Thicker layers (oxyde or nitride) have not been tested.
Nickel (320µm) Green(532nm/255mm) 200 kHz 100% 0,64 W 300 mm/s 3 burst none 4320 1 N/A Cutting Ni 320µm parameters Cutting through only blue tape left
Pyrex (1000µm) Red(1064nm/255mm) 200 kHz 100% 2,8 W 1000 mm/s 1 burst none 99 13 20 µm Cutting Pyrex 1000µm for microfluidic hole parameters Increase/decrease the number of iteration to increase/decrease the width of the hole. Microscope view of the chanel
Pyrex/Borosilicate glass (525µm) Red(1064nm/255mm) 200 kHz 100% 2,96 W 1000 mm/s 1 burst 4 (-0,1/-0,2/-0,3/-0,4mm) 300/500/700/900/1200 4 20 µm Cutting Pyrex 525µm parameters Cutting through. Dicing circle. Can probably be optimized: 3 lines may be enough and half the iterations (tried by Azeem)
Steel (50µm) Green(532nm/255mm) 200 kHz 20% 0,55 W 500 mm/s 1 burst 0 22 Cutting steel 50µm Cutting shrim for Injection molder.
Steel (100µm) Green(532nm/255mm) 200 kHz 25% 0,55 W 500 mm/s 1 burst 0 35 Cutting steel 100µm Cutting shrim for Injection molder.
Steel (200µm) Green(532nm/255mm) 200 kHz 25% 0,55 W 500 mm/s 1 burst 0 72 Cutting steel 200µm Cutting shrim for Injection molder.
Aluminum (400µm) Green(532nm/255mm) 200 kHz 100% ?? W 100 mm/s 3 bursts 0 35-40 4 20 cutting Al 400µm Cutting shadowmask for Wordentec.
Aluminum (600µm) Red IPG(1064nm/255mm) 100 kHz 100% - W 1000 mm/s 1 bursts 0 110 4 40 cutting Al 600µm Shadowmask.
The parameter filename extension is here set to .xls because of MediaWiki restrictions. The 3DMM laser software uses .par as parameter file extension.
The file should be a pure text-file with no formatting codes etc.