Specific Process Knowledge/Thin film deposition/Deposition of Gold

From LabAdviser
Jump to navigation Jump to search

Feedback to this page: click here

Unless otherwise stated, this page is written by DTU Nanolab internal

Gold can be deposited by e-beam evaporation or sputtering. In the chart below you can compare the different deposition equipment. We also describe the temperature rise on the wafer during gold deposition, the adhesion layers that can be used for gold deposition, the roughness of gold deposited in the Wordentec, and issues with particulates on the gold films in the Temescal and the Wordentec.

Au deposition

Below you can compare the different equipment that allows Au deposition.

E-beam evaporation (E-beam evaporator (Temescal) and E-beam evaporator (10-pockets)) E-beam evaporation (Wordentec) Resistive thermal evaporation (Thermal Evaporator) Sputter (Lesker) Sputter (Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)) Sputter coater (Sputter coater 03) Sputter coater (Sputter coater 04)
General description E-beam deposition of Au E-beam deposition of Au Resistive thermal deposition of Au Sputter deposition of Au Sputter deposition of Au Sputter deposition of Au Sputter deposition of Au
Pre-clean Ar ion etch (only in E-beam evaporator Temescal) RF Ar clean RF Ar clean
Layer thickness 10 Å to 1 µm * 10 Å to 1 µm * 10 Å to 200 nm 10 Å to 5000 Å ** 10 Å to 5000 Å ** very thin, few nm range very thin, few nm range
Deposition rate 0.5-10 Å/s (in 10-pocket machine only up to 5 Å/s as material is deposited from a liner) 1-10 Å/s 1 Å/s (can be adjusted to around 5Å/s) Depends on process parameters, 1-10 Å/s Depends on process parameters Not measured Not measured
Batch size
  • Up to 4x6" wafers or
  • Up to 3x8" wafers (ask for special holder)
  • many smaller pieces
  • 24x2" wafers or
  • 6x4" wafers or
  • 6x6" wafers
  • 4x2" wafers or
  • 3x4" wafers or
  • 1x6" wafer
  • 1x8" wafer
  • many smaller pieces
  • Pieces or
  • 1x4" wafer or
  • 1x6" wafer
  • Up to 10x6" or 4" wafers
  • Many small pieces
  • Several smaller samples
  • 1x4" wafer
  • Several smaller samples
  • 1x4" wafer
Allowed materials
  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals
  • Almost any as long as it does not outgas - see cross-contamination sheets in Labmanager
  • Silicon
  • Silicon oxide
  • Silicon nitride
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals
  • Carbon
  • Almost any as long as it does not outgas - see cross-contamination sheets in Labmanager
  • All samples allowed in the SEM Supra 1
  • All samples allowed in the SEM Supra 2 or 3
Comment
  • For thicknesses above 600 nm permission is required
  • Takes approx. 20 min to pump down.
  • Takes approx. 1 hour to pump down.
  • Make sure that all pellets are melted beforehand
  • Takes approx. 10 minutes to load and transfer sample
  • Takes approx. 12 minutes to load and transfer samples
  • Used for gold sputter coating of samples before SEM inspection
  • Very fast.
  • Used for gold sputter coating of samples before SEM inspection
  • Very fast.


* For thicknesses above 600 nm write to metal@nanolab.dtu.dk to ensure that there will be enough material in the machine.

** For thicknesses above 200 nm write to metal@nanolab.dtu.dk to ensure that there will be enough material in the machine.

Studies of Au deposition processes in the Wordentec

Roughness of Au layers - Roughness of Au layers deposited in the Wordentec

Wafer temperature

The wafer temperature during e-beam deposition of 200 nm Au on six wafers has been measured using thermal labels on the backside of the wafers. The following results were obtained:

Wafer Temperature [C]
1 48
2 60
3 65
4 71
5 71
6 77

The temperatures are accurate within approximately +/- 3C and probably underestimating the actual wafer temperature slightly. It is observed that the wafer temperature increases with each wafer, thus if wafer temperature is of concern it is advised to reduce the number of wafers per run.

Resistive thermal evaporation of Au

Adhesion of Au on Si

The adhesion of gold on Silicon or Silicon with native oxide is not very good. The Si substrate is often deposited an adhesion layer before the gold deposition. A few nm of Chromium or Titanium works well and they react with the Oxygen of Silicon oxide and present a metallic bond with gold. You can also use polymer or organosilane adhesion layers as exemplified by the work in the next section.

For Cr and Ti adhesion layers, a 5 nm to 10 nm thick layer of Cr or Ti is commonly used and it is important to deposit Cr or Ti and then immediately Au. If the vacuum chamber is opened in between, the surface of Cr or Ti will get oxidized and that will give a poor adhesion. If a gold layer needs to be deposited directly on Silicon, then native oxide has to be removed by deep in diluted HF and immediately load the evaporation chamber. And after the deposition, the wafer has to be heated op to get some Au-Si diffusion which improves the adhesion.

Below you can read about using an organosilane adhesion layer.

Thin Au layer using APTMS adhesion layer and sputter system Lesker

For depositing very thin, down to 6nm continuous Au layers on Si/SiO2 substrates. Works also with ALD deposited Al2O3 and TiO2 as substrate.

Adhesion promoter: aminopropyltrimethoxysilane (APTMS). MSDS here.
Adhesion promoter deposition: 3h immersion in 95%IPA, 2.5% H2O, 2.5% APTMS.

NOTE: the APTMS layer is degrading quickly in atmosphere, so deposit it as close to the Au deposition as possible.

Lesker deposition parameters:

Gun # Power [W] Ramp rate [W/s] Pressure [mtorr] Atmosphere Deposition rate [nm/s]
2 300 5 3 Ar 1

NOTE: As a general rule, the lower the pressure and higher the power (i.e. higher the deposition rate), the better.

Film characteristics (5-10 wafers for each thickness):

Thickness [nm] Roughness min [nm] Roughness max [nm]
6 0.25 0.4
10 0.3 0.5
24 0.3 0.5

NOTE: After depositing 10 layers of 10nm each, one on top of each other, the roughness increased to 0.8nm RMS

Work done by Johneph Sukham (@ DTU Fotonik) and Radu Malureanu (@ DTU Fotonik and DTU Nanolab) in 2016-2017.

Particulates in e-beam evaporated films

Au droplets on an Au film (image by Evgeniy Shkondin, Au identified by EDX).

We have found that the amount of particulates on the e-beam evaporated films depends on the deposition parameters. Specifically for gold it is hard to avoid tiny gold droplets on the films, but they can be minimized with careful attention to the sweep parameters, cleanliness of the target, etc.

The droplets appear to be inconsequential for many users, for instance if the Au layer is simply used as an electrical contact. However, for some users it is very important, for instance when the exact resistivity of the Au layer is critical.


You can read more about this issue here.


Quality control of e-beam evaporated TiAu films

Quality control (QC) for the Temescal
QC Recipe: Standard recipes/TiAu or Cr/Au
Deposition rate was at 10 Å/s (change to 2 Å/s from October 2022 as it gives less particles)
Thickness 10 nm / 90 nm
Pressure Below 1*10-6 mbar
QC limits Temescal
Deposition rate deviation ± 20 %
Measured average thickness ± 10 %
Thickness deviation across a 4" wafer ± 5 %

Thickness is measured in 5 points with a stylus profiler.
Additionally we examine the newly deposited films for particles using the particle scanner (if available, otherwise we use the Jenatech microscope in darkfield mode) and we monitor the sheet resistance of the Ti/Au or Cr/Au films.


Quality control (QC) for Wordentec
QC Recipe: Process 13
Deposition rate 10 Å/s
Thickness 10 nm / 90 nm
Pressure Below 4*10-6 mbar
QC limits Wordentec
Measured average thickness (Å) ± 10 %
Lowest accepted deposition rate (Å/s) 6 Å/s

Thickness is measured in 5 points with a stylus profiler.