We have three PECVD's here at DANCHIP. They can all be used to deposit Silicon oxides and Silicon nitrides with or without dopants of Boron, Phosphorus and Germanium. PECVD1 and PECVD3 are used for silicon based processing where as PECVD2 is dedicated deposition on III-V materials. PECVD1 is the cleanest system where as PECVD3 is allowed to use with substrates with small abouts of metal on. See the precise rules in the equipment manuals which are uploaded in LabManager.
PECVD is a chemical vapor deposition process that applies a plasma to enhance chemical reaction rates of reactive spices. PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors.
All though PECVD1, 2 and 3 are very similar you should not expect to transfer a recipe between the systems and get the same exact same result.
Overview of the performance of PECVD thin films and some process related parameters
Purpose
Deposition of dielectrica
Silicon oxide
Silicon nitride
Silicon oxynitride
PBSG (Phosphorous Boron doped Silica Glass)
Silicon oxide doped with Germanium
Performance
Film thickness
~10nm - 30µm
Index of refraction
~1.4-2.1
Step coverage
In general: Not so good
PBSG: Floats at 1000oC
Film quality
Not so dense film
Hydrogen will be incorporated in the films
Process parameter range
Process Temperature
300 oC
Process pressure
~200-900 mTorr
Gas flows
SiHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _4}
:0-60 sccm
NFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2}
O:0-3000 sccm
NHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _3}
:0-1000 sccm
NFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2}
:0-3000 sccm
GeHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _4}
:0-6.00 sccm
5%PHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _3}
:0-99 sccm
5%BFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2}
HFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _6}
:0-1000 sccm
Substrates
Batch size
1-3 4" wafer per run
1 6" wafer per run
Or several smaler pieces
Deposition on one side of the substrate
Substrate material allowed
Silicon wafers
with layers of silicon oxide or silicon (oxy)nitride
Quartz wafers
Material allowed on the substrate
Aluminium
All metals < 5% of the substrate coverage (ONLY PECVD3!)
Purpose
Deposition of dielectrica
Silicon oxide
Silicon nitride
Silicon oxynitride
PBSG (Phosphorous Boron doped Silica Glass)
Silicon oxide doped with Germanium
Performance
Film thickness
~10nm - 30µm
Index of refraction
~1.4-2.1
Step coverage
In general: Not so good
PBSG: Floats at 1000oC
Film quality
Not so dense film
Hydrogen will be incorporated in the films
Process parameter range
Process Temperature
300 oC
Process pressure
~200-900 mTorr
Gas flows
SiHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _4}
:0-60 sccm
NFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2}
O:0-3000 sccm
NHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _3}
:0-1000 sccm
NFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2}
:0-3000 sccm
GeHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _4}
:0-6.00 sccm
5%PHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _3}
:0-99 sccm
5%BFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2}
HFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _6}
:0-1000 sccm
Substrates
Batch size
1-3 4" wafer per run
1 6" wafer per run
Or several smaler pieces
Deposition on one side of the substrate
Substrate material allowed
Silicon wafers
with layers of silicon oxide or silicon (oxy)nitride
Quartz wafers
Material allowed on the substrate
Aluminium
All metals < 5% of the substrate coverage (ONLY PECVD3!)