Specific Process Knowledge/Thin film deposition/Deposition of Silicon Nitride: Difference between revisions

From LabAdviser
Jmli (talk | contribs)
No edit summary
Jmli (talk | contribs)
No edit summary
Line 174: Line 174:


==Deposition of Silicon Nitride using PECVD==
==Deposition of Silicon Nitride using PECVD==
PECVD nitride and oxynitride can be deposited in one of the [[Specific Process Knowledge/Thin film deposition/PECVD|PECVD]] systems at Danchip. You can run 1-3 wafers on several smaller chips at a time depending on which one of the PECVD's you use. The deposition takes place at 300 degrees Celsius. This can be of importance for some applications, but it gives a less dense film compared to LPCVD nitride, and the stoichiometry is on the following form: Si<sub>x</sub>N<sub>y</sub>O<sub>z</sub>H<sub>v</sub>. The step coverage and the thickness uniformity of the film are not as good as for the LPCVD nitride. In one of our PECVD systems (PECVD3) we allow small amounts of metal on the wafers entering the system; this is not allowed in the LPCVD furnace and in the clean PECVD (PECVD1). We also have a PECVD for deposition on III-V materials (PECVD2).
PECVD nitride and oxynitride can be deposited in one of the [[Specific Process Knowledge/Thin film deposition/PECVD|PECVD]] systems at DTU Nanolab. You can run 1-3 wafers on several smaller chips at a time depending on which one of the PECVD's you use. The deposition takes place at 300 degrees Celsius. This can be of importance for some applications, but it gives a less dense film compared to LPCVD nitride, and the stoichiometry is on the following form: Si<sub>x</sub>N<sub>y</sub>O<sub>z</sub>H<sub>v</sub>. The step coverage and the thickness uniformity of the film are not as good as for the LPCVD nitride. In one of our PECVD systems (PECVD3) we allow small amounts of metal on the wafers entering the system; this is not allowed in the LPCVD furnace and in the clean PECVD (PECVD1). We also have a PECVD for deposition on III-V materials (PECVD2).
*[[/Deposition of Silicon Nitride using PECVD|Deposition of Silicon Nitride using PECVD]] - ''or oxynitride''
*[[/Deposition of Silicon Nitride using PECVD|Deposition of Silicon Nitride using PECVD]] - ''or oxynitride''



Revision as of 15:00, 25 November 2019

Feedback to this page: click here

Deposition of silicon nitride

Deposition of silicon nitride can be done with either LPCVD (Low Pressure Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition). Stoichiometric nitride or silicon rich (low stress) LPCVD nitride is deposited on a batch of wafers in a LPCVD nitride furnace, and PECVD nitride (or oxynitride) is deposited on a few samples at a time in a PECVD system. LPCVD nitride has a good step coverage and a very good uniformity. Using PECVD it is possible to deposit a much lower temperature and a thicker layer of nitride on different types of samples, but the nitride does not cover sidewalls very well.

It is also possible to deposit silicon nitride using the Lesker sputter system.

Comparison of LPCVD, PECVD and Lesker sputter system for silicon nitride deposition

LPCVD PECVD Lesker sputter system
Generel description Low Pressure Chemical Vapour Deposition (LPCVD furnace process) Plasma Enhanced Chemical Vapour Deposition (PECVD process) Reactive sputtering
Stoichiometry
  • Stoichiometric nitride, Si3N4
  • Silicon rich (low stress) nitride, SRN
  • SixNyHz
  • SixOyNzHv

Silicon nitride can be doped with boron or phosphorus

Unknown
Film thickness
  • Stoichiometric nitride: ~5 nm - ~230 nm
  • Silicon rich (low stress) nitride: ~5 nm - ~335 nm

Thicker nitride layers can be deposited over more runs (maximum two)

  • ~40 nm - 10 µm
limited by process time.

Deposition rate is ~1.7nm/min

Process temperature
  • Stoichiometric nitride: 780 oC - 800 oC
  • Silicon rich (low stress) nitride: 810 oC - 845 oC
  • 300 oC
Room temperature (higher temperature possible)
Step coverage
  • Good
  • Less good
yes, but amount unknown
Film quality
  • Deposition on both sides og the substrate
  • Dense film
  • Few defects
  • Deposition on one side of the substrate
  • Less dense film
  • Incorporation of hydrogen in the film
  • Deposition on one side of the substrate
  • unknown quality
KOH etch rate (80 oC)
  • Expected <1 Å/min
  • Dependent on recipe: ~1-10 Å/min
Unknown
BHF etch rate
  • Very low
  • Very high compared the LPCVD nitride
Unknown
Batch size
  • 1-15 100 mm wafers (4" furnace), 1-25 100 mm wafers (6" furnace)
  • 1-25 150 mm wafers (only 6" furnace)
  • Several smaller samples
  • 1-7 50 mm wafers
  • 1 100 mm wafers
  • 1 150 mm wafer

Depending on what PECVD you use

  • Several smaller samples
  • 1-several 50 mm wafers
  • 1*100 mm wafers
  • 1*150 mm wafer
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon nitride
  • Pure quartz (fused silica)

Processed wafers have to be RCA cleaned

  • Silicon
  • Silicon oxide (with boron, phosphorous)
  • Silicon nitrides (with boron, phosphorous)
  • Pure quartz (fused silica)
  • III-V materials (in PECVD4)
  • Small amount of metals (in PECVD3)
Any