Specific Process Knowledge/Thin film deposition/Deposition of Silicon Nitride: Difference between revisions
→Comparison of LPCVD, PECVD and Lesker sputter system for silicon nitride deposition: Added sputter-system metal-nitridePC3 and metal-oxide PC1 |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Silicon_Nitride&action=submit click here]''' | '''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Silicon_Nitride&action=submit click here]''' | ||
<i> Unless otherwise stated, this page is written by <b>DTU Nanolab internal</b></i> | |||
== Deposition of silicon nitride == | == Deposition of silicon nitride == | ||
Line 13: | Line 15: | ||
*[[/Deposition of silicon nitride using Lesker sputter system|Nitride deposition using Lesker sputter system]] | *[[/Deposition of silicon nitride using Lesker sputter system|Nitride deposition using Lesker sputter system]] | ||
*[[/Deposition of silicon nitride using Sputter-System Metal-Oxide(PC1)|Nitride deposition using Sputter-System Metal-Oxide(PC1)]] | |||
==Comparison of LPCVD, PECVD, and sputter systems for silicon nitride deposition== | ==Comparison of LPCVD, PECVD, and sputter systems for silicon nitride deposition== |
Latest revision as of 10:12, 11 May 2023
Feedback to this page: click here
Unless otherwise stated, this page is written by DTU Nanolab internal
Deposition of silicon nitride
Deposition of silicon nitride can be done by either LPCVD (Low Pressure Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition). Stoichiometric nitride or silicon rich (low stress) LPCVD nitride is deposited on a batch of wafers in a LPCVD nitride furnace. PECVD nitride (or oxynitride) is deposited on a few samples at a time in a PECVD system. LPCVD nitride has a good step coverage and a very good uniformity. Using PECVD it is possible to deposit a much lower temperature and a thicker layer of nitride on different types of samples, but the nitride does not cover sidewalls very well.
It is also possible to deposit silicon nitride and oxynitride by reactive sputtering.
- Deposition of stoichiometric nitride using the 4" LPCVD nitride furnace
- Deposition of silicon rich (low stress) nitride using the 6" LPCVD nitride furnace
- Nitride deposition using PECVD (or oxynitride)
Comparison of LPCVD, PECVD, and sputter systems for silicon nitride deposition
LPCVD | PECVD | Sputter-System Metal-Nitride(PC3) and Sputter-System Metal-Oxide(PC1) | Lesker sputter system | |
---|---|---|---|---|
Generel description |
|
|
|
*Reactive sputtering |
Stoichiometry |
|
Silicon nitride can be doped with boron or phosphorus |
Tunable composition |
|
Film thickness |
Thicker nitride layers can be deposited over more runs (maximum two) |
|
|
|
Process temperature |
|
|
|
|
Step coverage |
|
|
|
|
Film quality |
|
|
|
|
KOH etch rate (80 oC) |
|
|
|
|
BHF etch rate |
|
|
|
|
Batch size |
|
Depending on what PECVD you use |
|
|
Allowed materials |
Processed wafers have to be RCA cleaned |
|
|
|