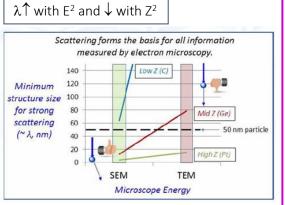
Transmission electron forward scatter diffraction (t-EFSD)

- Is based on the forward-dominance of low energy-los scattering.
- Detect and analyse transmitted electrons that have been coherently forward scattered
- Electrons that diffract near the top surface cannot maintain coherence for a significant distance in the specimen
- The most important Kikuchi scattering occurs near the exit surface

The quality of the pattern depends on both specimen thickness and Acc. Voltage

- Thicker samples pattern may also overlapping (Optimum between 75-200nm)
- \downarrow KV improve pattern in thinner areas, (maybe difficulties in indexing due to broader bands)


Angular resolution

- Standard conditions 0.5-1° but it can be as good 0.003° (strain measurements)
- <u>In thin samples</u> one must keep in mind the <u>artefacts</u> originating from the bending of the thin foil samples
- Because EBSD covers a large enough solid angle including a large number of zone axes, the angular resolution is <u>independent of the crystal orientation</u>.

٠

٠

Scattering mean free path (λ)= f(Z,E)

When the size of the sample \downarrow the λ must be decreases $\downarrow \rightarrow$ go to <u>lower energy</u> will be beneficial (most relevant for mid and high atomic number nanoparticles).

Physical resolution = 6-8 nm Effective resolution 2 nm (Nickel), ~10 nm (Al)

Specimen tilt

 \downarrow tilt \rightarrow weaker band contrast in the upper part of the detector \rightarrow difficult for automated indexing \rightarrow Solution move the detector up

<u> \uparrow tilt</u> \rightarrow electron beam path in the specimen becomes longer \rightarrow resulting in increasing beam spreading and poor resolution

Better resolution

•Forward scattering is favoured \rightarrow many electron my Kikuchi scatter near exit surface

•Forward scattered beam scatter through small angles.

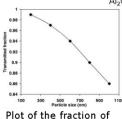
- Little beam spreading in thin specimens
- Many high energy electrons reach the exit surface
- Interaction volume is smaller

Parameters:

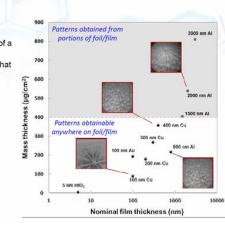
• Shorter detector sample distance (but not too short otherwise the camera resolution is not enough)

- Minimum tilt to avoid difference resolution in x and y direction
- Higher Acc. V is recommended to get good quality orientation maps.
- In case of very think samples, lowering Acc.V will give better results

Typical parameters


- Tilt up to 30 degrees away from EBSD detector
- Short WD (pattern center on the screen) improve the lateral resolution
- Beam energy 15-30KV
- Probe current similar to EBSD (No study on this)
- Dwell time similar to EBSD (our experience was a bit different)

e[°] e[°] Ni Ta Si₃N₄ t-EBSD Ni


82.5 nm

200mm Al₂O₃

Plot of the fraction of transmitted electrons vs Al_2O_3 particle diameter.

Resolution depends on:

- Probe size spatial resolution is in the order of the probe size
- Sample thickness there is a range that works better (Ni:75-200nm; t<400/ $\rho)$
- Acceleration voltage will depend on sample thickness and on Z
- Tilt angle resolution in x and y direction and beam spread (also related to the pattern centre \leftrightarrow quality of indexing)
- Detector distance compromise between large field of view and pattern shift accuracy (closer detector = zoom out)
- Working distance shorter are better, but pattern centre outside the screen can cause indexing problems
- Atomic number Z <u>Contrary to s-EBSD</u>, increasing Z increases beam broadening for a constant thickness and KV, and decrease resolution
- Number of grain through thickness-Some indications that does not affect much (???)

Mass-Thickness is a Key Factor for TKD/t-EBSD

mass-thickness ≝ density × thickness

- Describes effective scattering power of a specimen.
- Plot shows range of mass-thickness that we have so far successfully probed.
- Note that beam spreading will degrade spatial resolution for extremely thick specimens!
- Microstructure important!

 Multiple grains through thickness must be considered.

t<400/p

T-EFSD general guideline

- Use the TEM clamp holder and put your sample in one of the extremities
- Fix the clamp holder to a cross-section stub in a way that your sample is far away from the stub
- Attach the cross-section stub to the pre-tilted EBSD stage on the longest side (the one that is tilted to 54°)
- Put the stage into the microscope and pump
- Bring your sample to a working distance of 3 mm (maybe 2.5 mm)
- Tilt stage to 36° to get the sample horizontaly
- To improve orientation determination you can tilt the sample to -20 $^{\circ}$ (stage tilt to 16 $^{\circ}$) we have found that this was the optimum position.
- Change in OIM data colection software under setting/super users/ enviroment the enviroment setting to a specimen tilt of -20 ° (or whatever tilt you are using)
- Use the correct calibrated WD which are:

WD OIM	WD/ tilt Stage	WD/tilt sample
21	3mm/36°	3mm/0°
22	3mm/26°	3mm/-10°
23	3mm/16°	3mm/-20°

- Further step are just like regular EBSD, but better pattern are at 30KV
- The background is very crytical for TKD, make sure you colect a background exactly from the area you are measuaring or use dynamical background substraction (take longer time)
- Remember to set the Environment Settings back to 70°

Environment Settings	×
Hardware Configuration Specimen Tilt Coordinate System Pole Figure Configuration RD - bottom, TD - right Note: Changing the scan tilk or either of the camera angles necessitates a recalibration of the pixels per cm values.	Pixels per cm X: 0 Y: 0 Z: 0 Advanced
Libraries Video C:\Program Files (x86)\TexSEM\Plugins 6\VideoDemo_OimDC.dll Beam Control C:\Program Files (x86)\TexSEM\Plugins 6\BeamDemo.dll Stage Control	Browse
None EDS C:\Program Files (x86)\TexSEM\Plugins 6\EDSdemo_DimDC.dll Materials Database C:\Program Files (x86)\TexSEM\Plugins 6\db_TSL.dll	Browse Browse
	OK Cancel