Dielectric function measurement of emerging semiconductors

Andrea Crovetto

Postdoc

DTU Nanotech,

Technical University of Denmark

The 1st Nordic Ellipsometry Workshop

Linköping University, November 1st, 2016

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x) = a^{i} + a^{i} +$

DTU Nanotech Department of Micro- and Nanotechnology

Dielectric function of semiconductors

Which semiconductors?

• Thin-film sulfide semiconductors for solar cells

Why ellipsometry?

- Band gap and absorption coefficient are crucial for solar energy materials
- By comparing the experimental and calculated dielectric function, much can be learned about the electronic properties of those materials

Ellipsometry measurement issues?

- Those sulfides for solar cells must be:
 - deposited on a metal back contact
 - annealed in a sulfur atmosphere
 - → Problem 1: Multi-layered substrate
 - → Problem 2: Changes in properties of all layers upon annealing

Step 2: dielectric function of MoS₂ on Mo

 Anneal Mo in a sulfur + N₂ atmosphere to form MoS₂

MoS₂

glass substrate

Mo

• <u>2nd ellipsometry measurement</u>

A. Crovetto et al., Solar Energy Materials and Solar Cells, 154, 121–129 (2016)

200 nm

Step 3: measure the dielectric function of Cu_2SnS_3 on MoS_2/Mo

- Deposit a thin layer of Cu₂SnS₃ on Mo (to keep roughness low)
- Anneal Cu₂SnS₃ in a **sulfur+N₂** atmosphere
- <u>3rd ellipsometry measurement</u>

Case study: Cu₂SnS₃ (CTS)

Two interesting findings:

Other ellipsometry activities

non-ideal films

A. Crovetto et al., Thin Solid Films, 582, 203-207 (2015)

Other ellipsometry activities resistivity mapping

A. Crovetto et al., Journal of Physics D: Applied Physics, 49, 295101 (2016)

Other ellipsometry activities

optical measurement of carrier density & mobility

Material: **ZnO:AI** thin films

→ transparent conductor (degenerately doped high-band gap semiconductor)

A. Crovetto et al., Journal of Physics D: Applied Physics, 49, 295101 (2016)

Other ellipsometry activities

optical measurement of carrier density & mobility

Alternative method:

Burstein-Moss effect

The band gap increases proportionally to (carrier density)^{2/3}

A. Crovetto et al., Journal of Physics D: Applied Physics, 49, 295101 (2016)

Summary of activities

Dielectric function determination of new thin-film semiconductors

Learning about their electronic properties

□ Phase analysis of "non-ideal" thin films

□ Thickness **mapping** (for its own sake and for resistivity mapping)

□ All-optical determination of **electrical properties** of transparent conductive materials