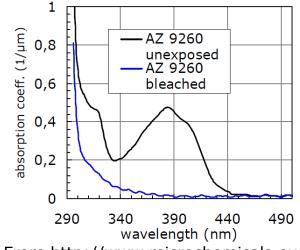


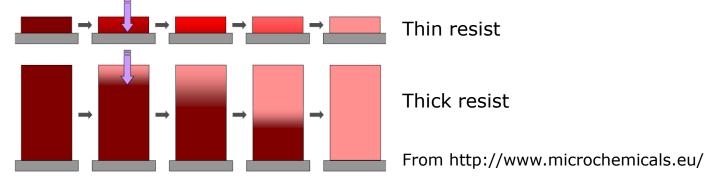
Lithography Tool Package


Photoresist

DTU Danchip National Center for Micro- and Nanofabrication

Photoresist: composition

- **Resin**: Monomers or polymer chains of varying length (solid at RT)
- **Photo-active component** (PAC): Reacts with UV-light during exposure and changes the resin
- Solvent (~70%): Dissolves the resin in order to enable coating
- Optical properties
 - Absorbs UV-light (spectral sensitivity)
 - Absorption decreases during exposurebleaching
- Thermal stability
 - Good up to ~100°C
 - At higher temperatures: reflow (rounding), embrittlement, burning
- Chemical resistance
 - Acid: good
 - Base: poor (develops)
 - Solvent: bad (dissolves)

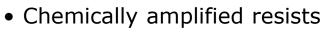


From http://www.microchemicals.eu/

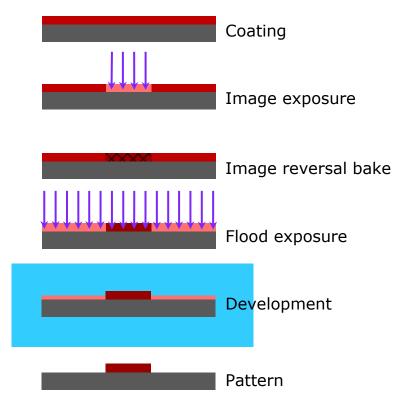
Photoresist: tone

Positive tone

- Exposed resist becomes soluble in developer
- Polarity change or chain scission
- Bleaching during exposure enables straight sidewalls even for thick resist
 - the dose_is a function of the resist thickness and the intensity

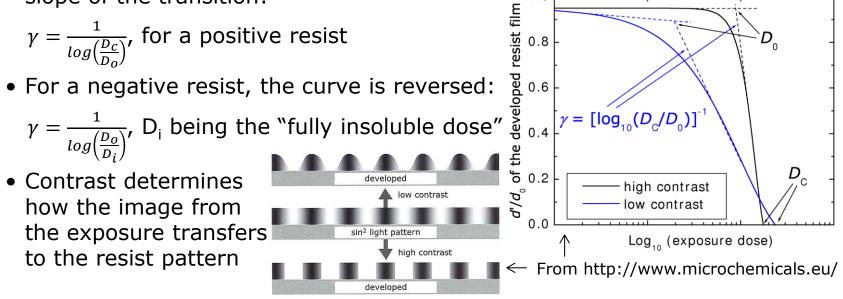


Negative tone


- Exposed resist becomes insoluble in developer
- Polarity change or cross-linking (usually requires PEB)
- Special case: no bleaching \rightarrow always negative sidewalls
 - the dose is approximately constant

Photoresist: special categories

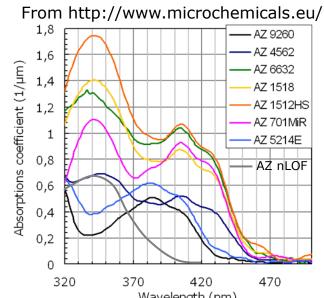
- Image reversal resist
 - Positive resist changed to negative by additional process steps
 - Cross-linker (NH₃) is added, activated by the *image reversal bake*
 - The temperature of the image reversal bake is a critical parameter
 - Requires flood exposure before development



- Photo-initiation is catalytic
- Requires PEB
- Dose = light + heat \rightarrow higher throughput

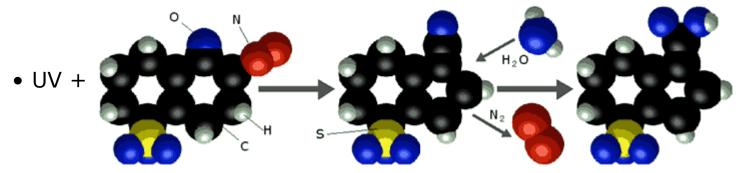
Photoresist: contrast

- Ideally, at least for high resolution, the response of a resist to exposure should be a step function, i.e. no development below a threshold dose; full development above the threshold dose
- In reality, development starts at a dose, D_0 , but finishes at a higher dose, D_C (dose to clear), leading to the definition of **contrast**, γ , as the slope of the transition:

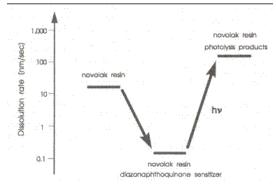


• Contrast depends on many factors: Developer chemistry, concentration, and temperature; Resist type and thickness; Softbake parameters; etc.

Photoresists at Danchip


- Standard UV-resists at Danchip are
 - Manufactured by AZ-Electronic Materials (formerly Hoechst/Clariant)
 - Distributed by MicroChemicals GmbH
- nLOF doesn't bleach
- 5214E can be image reversed
- Spectral sensitivity -----

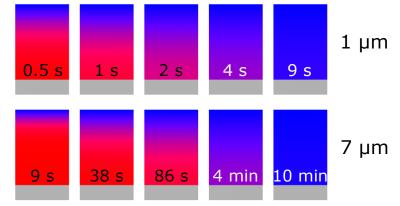
			wavelength (nm)		
	MiR 701	nLOF 2020	5214E	4562	
Positive	х		х	Х	
Negative		x	x		
Thickness	1.5 – 4 µm	1.5 – 4 µm	1.5 – 4 µm	5 – 10 µm	
351B	(x)	(x)	x	x	
726 MIF	x	х	х	Х	


Photoresist: photo-chemistry

- AZ 5214E and AZ MiR 701 have **d**iazo**n**aphtho-**q**uinone-sulphonate (DNQ) as the photo-active component, or photo-initiator
- During exposure, DNQ absorbs the exposure light, and transforms into a corboxylic acid while releasing N_2 and absorbing H_2O

From http://www.microchemicals.eu/

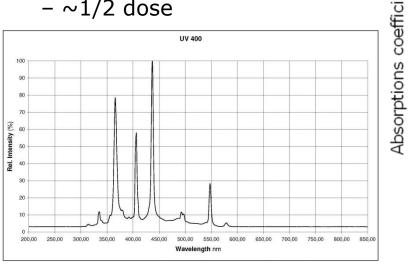
- DNQ lowers the solubility of the resin in the developer, while the corboxylic acid increases the solubility
 - \rightarrow positive tone resist

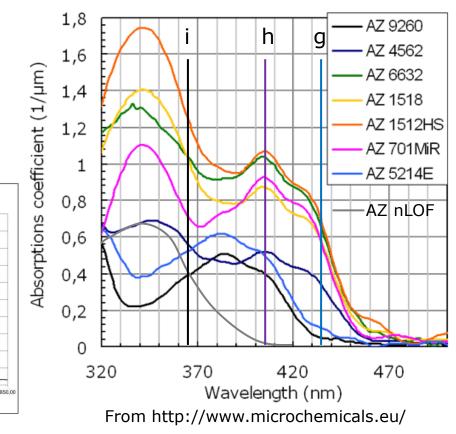

From http://www.micronanofab.eu/

2016

Photoresist: photo-chemistry, consequences

- After softbake, the resist has to rehydrate in order to enable exposure
 - $1\mu m$ rehydrates in 10s
 - 10µm requires at least 10 minutes
 - Thicker films may require hours to rehydrate
 - Insufficient rehydration leads to under-development and/or non-straight sidewalls


From http://www.microchemicals.eu/


- \bullet After exposure, the N_2 has to outgas before any thermal process in order to prevent bubbles from forming
 - Before image reversal bake (5214E), and possibly PEB (MiR 701)
 - 1µm outgasses in ~1 minute, 3µm in ~10 minutes, while a 10µm film may require hours to outgas
- AZ nLOF 2020 has a different PAC (melamine-based crosslinker), and does not require rehydration or outgassing

Photoresist: exercise

Estimate the change in exposure dose when changing from i-line exposure (365nm) to broadband exposure (365nm + 405nm + 435nm)

- MiR 701
 - $\sim 1/3$ dose
- nLOF 2020
 - No change
- 5214E
 - $\sim 1/2$ dose

