ALD

Process meeting December 2013

Pernille Larsen Evgeniy Shkondin

ALD theory

ALD: Atomic layer deposition

Thermal ALD

- Plasma assisted ALD

Precursers:

- Gas
- Liquid
- Solid

ALD valves:

- Very short reaction time

ALD theory

Reaction (one cycle):

 $A \rightarrow A^*$, A is chemisorped on the wafer surface (and everywhere else)

$$A^* + B \rightarrow AB + C$$
, AB react to form one momolayer

More cycles:

Perfect step coverage

All reactions have to take place on the surface, otherwise it is not possible to obtain a perfect step coverage

Thin uniform layers require a very clean sample surface

In practice a 5-10 nm layer is required to have a closed ALD layer

Thermal ALD

IMS: Intermediate space

Heating:

- Increasing temperature from precurser source to ALD reactor
- Wafer heated
- ALD reactor heated (same temperature everywhere)

Lid for sample loading

Picosun ALD

Ozone ___ generator

Cabinet with — liquid and solid precursers

Sample holder for batch processing

Ozone destroyer

Picosun ALD

ALD reactions:

- TMA + $H_2O \rightarrow Al_2O_3$
- $TiCl_4 + H_2O \rightarrow TiO_2$
- $MeCpPtMe_3 + O_2 \rightarrow Pt$

Precusers:

- TMA
- TiCl₄
- MeCpPtMe₃
- H₂O (water)
- O_2 (oxygen)
- O₃ (ozone)

MeCpPtMe₃ precurser:

- Price: 150 €/gram
- 0.5 gram used for 1 run (50 nm Pt)
- Not all users will be allowed to deposit Pt

Factory acceptance test (FAT):

- Functional test
- Al₂O₃ on planar Si surface:
 - 20 nm Al₂O₃ grown in 2 hours
 - Thickness and uniformity within 5%
 - Wetting confirmed by AFM measurement

FAT results:

- 50 nm Al₂O₃ grown
 in 2 hours
- Thickness and non-unformity for 6" wafer: 0.6 %

Al₂O₃ process

One cycle:

- TMA pulse: 0.1 s, 150 sccm

- N_2 purge: 3 s

- H₂O pulse: 0.1 s, 200 sccm

- N_2 purge: 4 s

Number of cycles: ~500

Time: ~2 hours

Temperature: 300 °C

Result: 50 nm Al₂O₃

Longer purge time for high aspect ratio structures

Site acceptance test (SAT):

- Functional test
- Al₂O₃ on planar Si surface:
 - 20 nm Al₂O₃ grown in 2 hours
 - Thickness and uniformity within 5%
 - Wetting confirmed by AFM measurement
- TiO₂ on planar Si surface:
 - 20 nm TiO₂ grown in 2 hours
 - Thickness and uniformity within 5%
 - Wetting confirmed by AFM measurement
- TiO₂ in trenches:
 - Trench dimensions: 200 nm width, 4 μm depth
 - 20 nm TiO₂ grown in 2 hours
 - Thickness and uniformity within 5%

SAT not completed yet

Si sample with trenches for FAT

DRIE Pegasus etch:

"polySOI-10" recipe
70 cycles (08 min 45 s)

Al₂O₃ results

Al₂O₃ results

