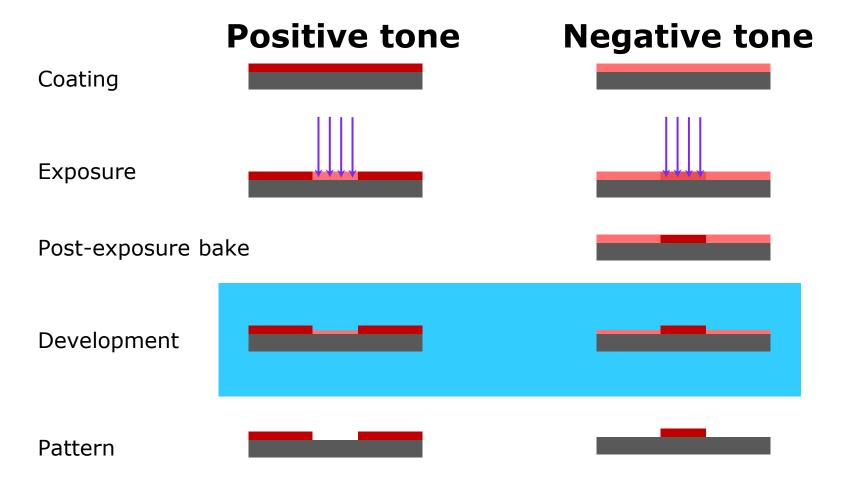


Lithography Tool Package

Development

DTU Danchip National Center for Micro- and Nanofabrication

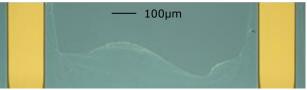

Development: principle

- In the exposure, light activates the *photo-active compound* which changes the solubility of the resist in the developer in the exposed areas
- In some resists, the photo-chemistry is a catalytic process, which is activated/assisted thermally in a so-called **P**ost-**E**xposure **B**ake (PEB)
- The developer may be a solvent, or an aqueous solution (usually a base)
- During development, the soluble parts are dissolved, leaving a pattern of resist on the substrate
- The development process is terminated by rinsing (solvent and/or water)

Methods

- Submersion: the substrate is submerged in a bath of developer
- Puddle: developer is dispensed onto the surface of the substrate, and held there by surface tension
- Spray: developer is sprayed onto the substrate

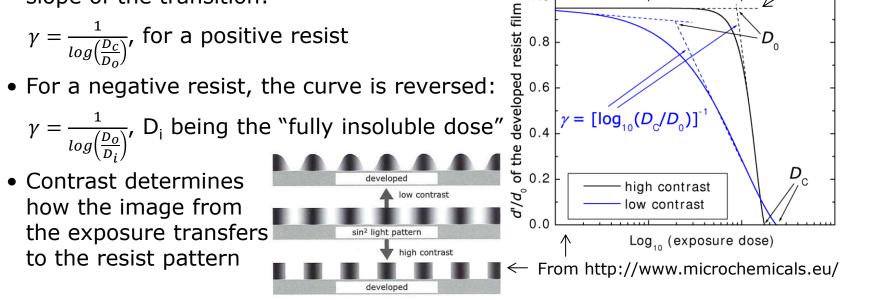
Development: resist tone


100µm

Development: effects

• **Under-development**: resist remaining between pattern

- Increase development time
- Increase exposure dose
- Dark erosion: pattern attacked by the developer
 - Minimize development time
 - Optimize softbake parameters
- **Scumming**: resist residues left behind on the substrate
 - Substrate and developer dependent
- Forgetting PEB leads to
 - under-development of positive tone resist
 - full development (no pattern) of negative tone resist


Under-developed resist

Scumming on SiO₂. Courtesy of Sonny Massahi

Photoresist: contrast

- Ideally, at least for high resolution, the response of a resist to exposure should be a step function, i.e. no development below a threshold dose; full development above the threshold dose
- In reality, development starts at a dose, D_0 , but finishes at a higher dose, D_C (dose to clear), leading to the definition of **contrast**, γ , as the slope of the transition:

• Contrast depends on many factors: Developer chemistry, concentration, and temperature; Resist type and thickness; Softbake parameters; etc.

Developers at DTU Danchip

- AZ 351B
 - NaOH in water
 - buffer additive (for submersion)
- AZ 726 MIF
 - TetraMethylAmmonium Hydroxide in water
 - wetting agent (for puddle)
- mr-Dev 600
 - PGMEA for SU-8 development

	MiR 701	nLOF 2020	5214E	4562	SU-8
Thickness	1.5–4 µm	1.5–4 µm	1.5-4 µm	5–10 µm	4-200 µm
Positive	Х		Х	Х	
Negative		х	Х		Х
AZ 351B	(x)	(x)	Х	Х	
AZ 726 MIF	Х	х	Х	Х	
mr-Dev 600					Х

After lithography: pattern transfer

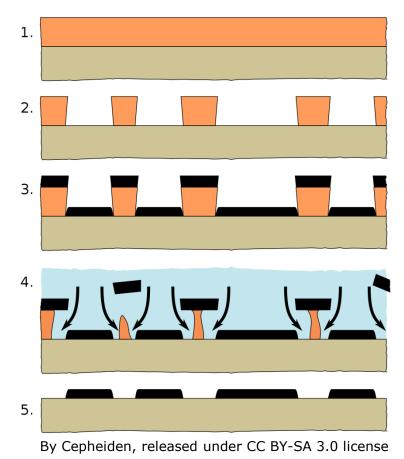
• Etching

- Resist pattern is transferred to substrate or hard mask
- Wet: liquid chemical, possibly heat
- Dry: gas, possibly plasma
- Scumming leads to micro-masking \rightarrow roughness

• Electroplating

- The resist patterns growth of a metal film
- Film growth by electro-chemical reduction of ions (electrolyte)
- Requires conductive substrate or seed layer
- Scumming leads to partial film growth

• Implantation


- The resist patterns doping of the substrate
- Selective doping of substrate using accelerated ions

After lithography: pattern transfer

• Lift-off

- A thinfilm (usually metal) is deposited on top of the resist pattern
- Requires directional deposition (nonconformal)
- After deposition the resist is dissolved, leaving only the part film of the film that was deposited on substrate
- Best result with negative sidewalls
- Scumming leads to poor adhesion/contact
- Method: solvent and ultrasound

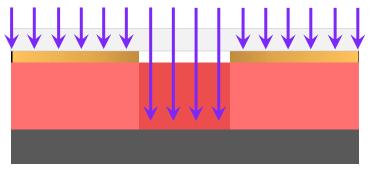
After lithography: post-processing

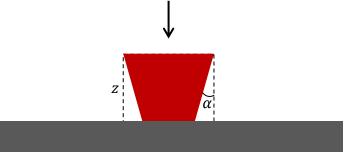
De-scum

- Before pattern transfer
- Methods:
 - Plasma ashing (low power and short time)
 - BHF (silicon substrate)

Hardbake

- Before pattern transfer in order to increase the mechanical, thermal, or chemical resistance, and/or increase adhesion
- Method:
 - Baking at 130–150 °C


Resist strip


- After pattern transfer
- Methods:
 - Plasma ashing (high power and long time)
 - Solvent and ultrasound

After lithography: exercise

- In contact lithography for lift-off, would the resolution be limited by diffraction, or by the 15° negative sidewall angle of the resist?
- Assume:
 - i-line lithography (λ =365nm)
 - Resist thickness $z=2\mu m$
 - No gap during exposure (s=0)
- R_c = 0.91µm
- $R_a = 1.07 \mu m$ (assuming c=0)
- Sidewall angle limits resolution

$$R_c = \frac{3}{2} \sqrt{\lambda \left(\frac{z}{2}\right)}$$

 $R_a = 2z \tan \alpha (+c)$

Outline

1. Introduction

- UV lithography
- DUV Stepper
- E-beam writer

2. Spin coating

- Resist composition
- Pre-treatment
- Principle
- Softbake
- Spin curve

3. Exposure

- Hardware
- Process parameters
- Resolution
- Alignment
- Photo-chemistry

4. Development

- Principle
- Effects
- Resist contrast
- Pattern transfer
- Post-processing

5. Process effects and examples

- Inspection methods
- Process effects
- Real life process examples

