

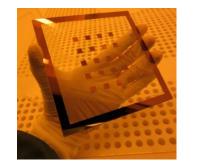
Lithography Tool Package

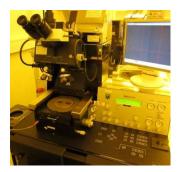
Exposure

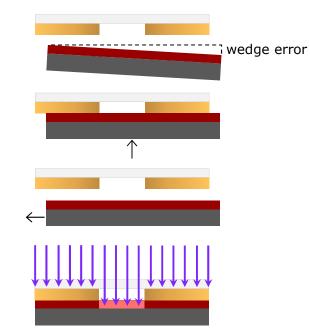
DTU Danchip National Center for Micro- and Nanofabrication

Exposure: outline

- Principle
 - Load, WEC, align, expose
- Light source and optics + mask
- Exposure modes
 - Proximity
 - Contact (soft, hard, vacuum)
- Exposure dose + influences
- Theoretical resolution limit + practical limit, CD
- Alignment + tolerance
- Exercise: The effect of edge bead on resolution

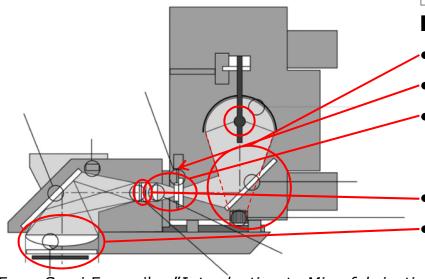

Exposure: procedure and hardware

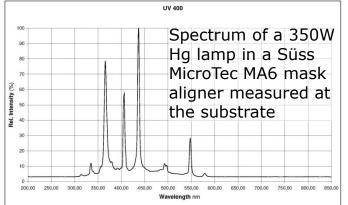

Mask


- A glass plate with chrome pattern
- Commercially produced, usually laser or e-beam lithography
- Anti-reflection coating makes chrome side brown

Exposure procedure

- Load substrate into machine
- Machine performs Wedge Error
 Compensation: substrate surface is made parallel to mask
- Align substrate to mask: the substrate is moved in order to align marks on the substrate to marks on the mask
- Expose substrate: the shutter is opened for a predefined time





Exposure: procedure and hardware, cont.

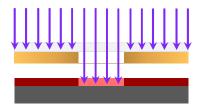
Exposure source

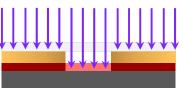
- Mercury arc lamp: emits spectral lines on top of thermal light
- High power input, most is lost (heat, unwanted wavelengths)
- Most used spectral lines: 365nm, 405nm, 435nm

Exposure optics

- Cold mirror: dumps white light
- Shutter: blocks the light
- Fly's eye lens (lens array) and condenser lens: makes the light spatially uniform
- Filter: selects the desired line(s)
- Front lens: collimates the light (parallel beams)

From Sami Franssila, "Introduction to Microfabrication" 2010


Exposure: parameters


Exposure mode

- Proximity: mask and substrate are separated by a gap of e.g. 10µm during exposure
 - Pros: the mask does not get dirty \rightarrow hundreds of prints
 - Cons: reduced resolution (line broadening, corner effects)
- Contact: mask and substrate are in close contact during exposure
 - Pros: highest resolution
 - Cons: the mask gets dirty \rightarrow a few prints
 - Subtypes: soft, hard, vacuum

Exposure dose

- Dose = intensity * time [mW/cm² * s = mJ/cm²]
- Optimal dose is a function of many variables
 - Resist; sensitivity, thickness, softbake parameters
 - Exposure light; wavelength, intensity
 - Developer; chemistry, temperature, time
 - Mask material: absorption (quartz or other glass)

Exposure: details

Wedge Error Compensation

- The stage pushes the substrate on the chuck against the mask while being able to tilt (roll and pitch)
- Once contact has been established, the tilt is locked, enabling the stage to move down while maintaining parallelism

Contact printing

- Soft contact: many good prints
 - Same force as WEC
- *Hard contact*: ~10 very good, uniform prints
 - The vacuum between substrate and chuck is replaced by a N_2 pressure, forcing substrate and mask in closer contact
- Vacuum contact: 1 perfect print, thereafter only perfect in areas
 - A chamber is created between chuck and mask (by inflating a rubber ring around the substrate), and the space between substrate and mask is evacuated
- 6 DTU Danchip, Technical University of Denmark

Exposure: resolution

Theoretical resolution limit

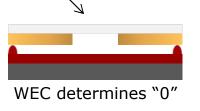
$$R = k \sqrt{\lambda \left(s + \frac{z}{2}\right)}$$

- s: gap between mask and resist
- z: resist thickness
- λ : wavelength of exposure light
- k: a constant, theoretically 1.5

Adapted from Marc J. Madou "*Manufacturing Techniques for Microfabrication and Nanotechnology*" 2011. Valid for a (two dimensional) grating with period 2R.

Practical resolution

- In practice, resolution is decreased by resist contrast, stability (aspect ratio), and adhesion to substrate, as well as the contact during printing (both across the substrate and from print to print) \rightarrow k > 1.5 \approx 2.5
- Critical dimension (minimum feature size) should always be CD > R
- 3µm is possible everyday; 1.25µm only when you are lucky


Alignment accuracy

- Manual alignment to $\pm 1\mu m$ is possible
- Remember to include tolerance in your design!
- 7 DTU Danchip, Technical University of Denmark

Exposure: exercise

- What is the effect of a $2\mu m$ edge bead on the resolution limit of i-line exposure (365nm) of a $2\mu m$ resist film in the case of contact printing, and proximity printing (proximity gap = $10\mu m$), respectively?
- Contact printing:
- $R = 0.91 \mu m$ without edge bead
- $R = 1.57 \mu m$ with $2 \mu m$ edge bead; almost 75% increase
- Proximity printing:
- $R = 3.01 \mu m$ without edge bead
- $R = 3.27 \mu m$ with $2 \mu m$ edge bead; less than 10% increase
- Why does the gap still increase in proximity mode?

$$R = k \sqrt{\lambda \left(s + \frac{z}{2}\right)}$$

