

PART I

How does an electron beam writer work

PART II

Proximity Effect Charging Effect Resist types: Positive and Negative Heisenberg Uncertainty Principle Temperature Issues Exercise: calculation of beam diameter

PART III

Introduction to JEOL JBX-9500 Preparation of files Calibration of Machine Exercise: preparation of sdf, jdf, and v30-files

> PART IV Performance tests on JEOL JBX-9500

How does an electron beam writer work

Spot electron-beam writer

wafer spin coating patterning developing electron sensitive resist

minimum linewidth ~10 nm

minimum beam diameter ~4 nm

shot pitch

DTU Danchip National Center for Micro- and Nanofabrication

Spot electron-beam writer

TU Danchip National Center for Micro- and Nanofabrication

Spot electron-beam writer

w = 100 nm
$$\int I = 1 mm$$

DTU Danchip National Center for Micro- and Nanofabrication

Magnetic Electron Lenses

The 2nd/3rd lenses (zoom lenses) determine the beam current. The 4th lens (objective lens) projects the beam spot to the substrate.

Simple magnetic lenses and quadrupole lens (right)

Emitter thermal emission source: stable, high energy spread, dies fast cold field emission source: lower energy spread, enhanced brightness, not stable (noisy - tip contamination), long term drift

	Brightness (A/cm2/sr)	Source size	energy spread (eV)	vacuum requirements (Torr)
W ermionic	~10 ⁵	~25 µm	2-3	10 ⁻⁶
old field emission	~10 ⁹	~5 nm	0.22	10 ⁻¹⁰
thermal field emission	~10 ⁸	~20 nm	0.9	10 ⁻⁹

Handbook of Microlithography, Micromachining, and Microfabrication, SPIE, 1997

mm

Ш

1 mm

1 mm

Dynamic focus and astigmatism correction

Beam shape in center of field and deflected to corners of field

Beam shape in center of field and deflected to corners of field corrected for dynamic focus

Beam shape in center of field and deflected to corners of field corrected for dynamic focus and dynamic astigmatism

	Daily Calibration Fourne
SFOCUS	Subprogram that adjusts the focus and astigmatism of the objective lens, and the electromagnetic stigmator (astigmatism correction) coil.
PDEFBE	Using the BE mark, PDEFBE automatically corrects the deflection gain and corrects the rotation of the main deflector.
DISTBE	Measures and corrects the deflection distortion of the electron beam in the writing field
SUBDEFBE	Corrects the deflection gain of the sub-deflector and corrects the rotation
HEIMAP	Measures the height of substrate within the specified range. Electron beam is focused to average height of substrate. This only applies to direct writing (mask writing).

Daily calibration routin

Proximity Effect Charging Effect Resist types: Positive and Negative Heisenberg Uncertainty Principle Temperature Issues Exercise: calculation of beam diameter

DTU Danchip National Center for Micro- and Nanofabrication

Electron-matter interaction

Backscattering

- 1. electron-nucleus interactions
- electron retains (most of) its energy: elastic
- 3. change of travel direction

Forward scattering

- electron-electron interactions (ionization or excitation)
- 2. some energy transferred: inelastic
- 3. causes widening of exposure regions

Electron-matter interaction

60 s development N50, 30s nano1.42 etch @ -20°C, gentle resist strip (O plasma)

DTU Danchip National Center for Micro- and Nanofabrication

Electron-matter interaction

500 nm resist on Si substrate Trajectories XZ 00000000000 100 keV electrons on Si substrate 20 keV 100 keV 5 keV **PyPenelope** 0.007 1.33 0.12 C Z (Jm) 31.2 2.0 0.18 β 0.74 0.74 0.74 ŋ X (pm) 10⁴ 100 keV Norm. absorbed energy distribution $(1/nm^2/e)$ Target PSF (AED) 10 20 keV Conventional 2G PSF form 5 keV \$ = = = = = = = = = # Conventional 3G PSF form 10² Conventional 2G+1E PSF form New 1G+2E PSF form Dose modulation 10° simulated by **BEAMER** 10^{-t} software using double 10⁻² gaussian proximity J. Micro/Nanolith. MEMS MOEMS 11(1), 013009 (Jan-Mar 2012) effect 20 30 40 50 60 10 0.2 0.4 Radius (nm) -0.4 -0.2 0 0.6 -0.6 Distance [µm]

DTU Danchip National Center for Micro- and Nanofabrication

Discharging defects

A pattern electron-beam exposed on a non-conducting substrate (borofloat glass) coated with ~150 nm AR-P 6200 CSAR leads to discharging defects in the resist (left). The same pattern is re-exposed on a similar substrate and resist, this time coated with Espacer 300 (Showa Denko) before exposure (right). SEM inspection of the latter exposure revealed no discharging effects (inset).

E-beam resist

G(s) - number of main scissions produced per 100 eV of energy absorbed G(x) - number of crosslinks produced per 100 eV of energy absorbed

Contrast curves

mrEBL CSAR 5 nm $A = 19.6 \text{ nm}^2$ dose 20 300 μ C/cm² Poisson distributed Normal distributed for large m electrons/ 1.25 18.75 nm² mn electrons/ m = expected $P_n =$ e -m 25 368 beam shot n = true n! P(m-1) ~ 8% ~ 2%

Resolution and sensitivity walk hand in hand

Beam shot

Contrast curves

100 nm lines. ~80 nm thick mrEBL, mrDEV at ~20°C

William Tiddi, Graph and SEM pictures

AR-P 6200 (CSAR)

100 nm lines, 200 nm spaces, ~150 nm thick CSAR, AR-600-71 at ~20°C

270 μC/cm² 240 μC/cm² 210 μC/cm² 180 μC/cm² 150 μC/cm² AFM: Berit Geilman Herstrøm, DTU Danchip (2015)

TU Danchip National Center for Micro- and Nanofabrication

Fundamental quantum mechanical limit of electrons

DTU Danchip National Center for Micro- and Nanofabrication

Hands-on the JBX9500

Si

2.56

77 nm

DTU Danchip National Center for Micro- and Nanofabrication

Theoretical limit of beam diameter of an electro-optical system

$$d^2 = \left[\frac{i}{B} + (1.22\lambda)^2\right] \frac{1}{\alpha^2} + \left(C_c \frac{\Delta E}{E_0}\right)^2 \alpha^2 + (0.5C_s)^2 \alpha^6$$

Parameter			
beam current	i [A]	1E-09	
Brightness	B [A/cm ² /sr]	1E+09	
Average energy of electrons	E ₀ [keV]	100	
Energy spread of electrons	ΔΕ [eV]	1.5	
de Broglie wavelength	λ [pm]	3.88	
convergence half-angle	α [radians]	2E-03	
Chromatic aberration coefficient of final lens	Cc [mm]	40	
Spherical aberration coefficient of final lens	Cs [mm]	60	

Optimizing electron beam lithography in the nanometer range, Vladimir Zlobin, 13 April 2006, SPIE Newsroom

Theoretical limit of beam diameter of an electro-optical system

$$d^2 = \left[\frac{i}{B} + (1.22\lambda)^2\right] \frac{1}{\alpha^2} + \left(C_c \frac{\Delta E}{E_0}\right)^2 \alpha^2 + (0.5C_s)^2 \alpha^6$$

Optimizing electron beam lithography in the nanometer range, Vladimir Zlobin, 13 April 2006, SPIE Newsroom

E-beam Lithography @ DTU Danchip PART III

Introduction to JEOL JBX-9500 Preparation of files Calibration of Machine before exposure Exercise: preparation of sdf, jdf, and v30-files

JEOL JBX-9500FS: Installed 2012 ISO 4 (class 10) cleanroom Temperature drift control 0.05 K/h Screened from magnetic noise (0.05 µT)

DTU Danchip National Center for Micro- and Nanofabrication

- (1) On weak ground (on reclaimed land, near the edge of a lake or river, near the sea shore, etc.)
- (2) Within 50 m of a motorway
- (3) Within 100 m of a railway
- (4) Within 15 m of an elevator
- (5) Within 10 m of an electrical machine of 10 kW or more

(6) Within 10 m of a large transformer of 10 kVA or more

(7) Within 3 m of indoor wiring rated at 100 A or more

- (8) Within 20 m of high-voltage wiring in a factory
- (9) Within 30 m of an electric-power substation
- (10) Within 150 m of high-voltage transmission lines
- (11) Within 1 km of a transmitter antenna
- (12) Within 2 m of a personal computer or other computer

(13) Where a high-power transceiver or wireless telephone is being used

(14) A very acoustically noisy place

DTU Danchip National Center for Micro- and Nanofabrication

Procedure

- 1. File preparation: sdf-file, jdf-file and GDS-file
- 2. Converting of GDS to v30
- 3. Compiling of files
- 4. Load of substrate
- 5. Calibration of column
- 6. Exposure

File preparation: sdf-file, jdf-file and GDS-file

🗑 SuperEdi - [QC12W1003.sdf]	
Eile Edit View Format Tools Window E	×
🗅 🚅 🕶 🔛 🗢 🖬 🕶 🕼 📾 🛍 🗙 🗰 🗠 🗠 a	>>
M:\E-beam\sdf jdf templates\QC12W1003.sdf	
9 qc12w1003jdf 📃 QC12W1003.sdf *	
	^
MAGAZIN 'QC1'	
#7	
JDF 'qc12v1003',1	
CALPRM '2na_ap5'	
DEFMODE 2 ;2_stage deflection GIMDET S	
CHIPAL 4 RESIST 300	
SHOT A.8	
OFFSEI(0,0)	
#7	
24B JDF 'cel2x1003' 1	
ACC 100	
DEFMODE 2 ;2_stage deflection	
GIMDET S CHIPAL 4	
HSVITCH ON, OFF	
SHOT A,8	
OFFSET(0,0)	
ÉND 7	
	÷
· · · · · · · · · · · · · · · · · · ·	.4
Ready	

DTU Danchip National Center for Micro- and Nanofabrication

#7 %4A JDF 'qcl&wl003',1 ACC 100 CALPRM '&nA_ap5' DEFMODE & GLMDET & GLMDET S CHIPAL 4 RESIST 300 SHOT A,8 OFFSET (0,0)

cassette #7 wafer position 4A jdf file, layer 1 acceleration voltage condition file; 2 nA 2 deflectors in use global mark detection chip mark detection dose in units shot pitch 4 nm pattern offset

Array of 3x3 chips, pitch 10000, center of upper left at (-1000,1000), each chip patterned with ARRAY 1

ARRAY 1: Array of 3x3 chips, pitch 1000, center of upper left at (-1000,1000), each chip patterned with v30-file 'TIGRE_L1CM4.v30'

Х

Converting of GDS to v30: BEAMER

DTU Danchip National Center for Micro- and Nanofabrication

Compiling of files

Compiling of files

Check magazinefile with ACHK

_	Shot shape display	· · [
<u>F</u> ile <u>V</u> iew	Option Print	Help
Pattern file	name [L4-96nm.v30]	
		Shot information Figure type RECTYL RECTY Shot rank 0 335.0 [%] Position [um] X1 499.861000 X2 499.889000 Y1 499.966000 Y1 499.861000 Y2 499.966000 Y4 499.861000 Y3 499.889000 Y4 501.178000 Y3 501.178000 Shot count 2432
		Scan pitch 4.000 [nm] Beam size 3.366 [nm] Simulation
		Display mode Field boundary Colored shot rank Overlap/Multi. 1st ptn Shot form ASD Fill in a pattern
Material X: Chip X:	[um] Y: [um] Size 0.203 × 0.287 [um] [um] Y: [um]	Stop Reset Zoon out

Load of substrates

chip cassette (3")

2" cassette

4" cassette

Only authorized DTU Danchip staff are allowed to load cassettes

Calibration of column

-			EBX me	mu				
File Mode Mana	gement							Help
Operation mode: O Accelerating volt	perator mode age : 50kV							
		÷						
Exp. Metro.	Clb.	Stg.	Ald.	EOS	Moni.	Ammeter	Analysis	Image

Exposure Calibration Load

Image

DTU Danchip
National Center for Micro- and Nanofabrication

	Daily Calibration Fourne
SFOCUS	Subprogram that adjusts the focus and astigmatism of the objective lens, and the electromagnetic stigmator (astigmatism correction) coil.
PDEFBE	Using the BE mark, PDEFBE automatically corrects the deflection gain and corrects the rotation of the main deflector.
DISTBE	Measures and corrects the deflection distortion of the electron beam in the writing field
SUBDEFBE	Corrects the deflection gain of the sub-deflector and corrects the rotation
HEIMAP	Measures the height of substrate within the specified range. Electron beam is focused to average height of substrate. This only applies to direct writing (mask writing).

Daily calibration routin

Calibration of condition file

SFOCUS PDEFBE DISTBE SUBDEFBE HEIMAP

TU Danchip National Center for Micro- and Nanofabrication

LLD: / / LAD	<u>manager. utu</u>	I. ak/ Tunci	<u>.ion.pnpmoau</u>	ile=machine@viev	<u>w=view@macn=29</u>
	-	*			► La

Ready Ln 12, Col 61 L	<	E. M			P
	Ready		Ready	Ln 12, Col 61	L a

AL.

Performance tests on JEOL JBX-9500

Hands-on JEOL JBX9500 Stitching accuracy: field to field

Hands-on JEOL JBX9500 Stitching accuracy: overlay accuracy

Hands-on JEOL JBX9500 Stitching accuracy: overlay accuracy

X direction 5 ± 3 nm Y direction 3 ± 2 nm

E-beam Resist

Positive-tone e-beam resist
CSAR
ZEP520A
PMMA

Negative-tone e-beam resist mrEBL6000 AR-N 7520 HSQ

http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/ Lithography/EBeamLithography#E-beam_resists_and_Process_Flows

AR-P 6200 (CSAR) - standard positive resist @ DTU Danchip

AR-P 6200 (CSAR) - standard positive resist @ DTU Danchip

~12 nm lines in ~50 nm thick CSAR resist 0.2 nA, dose 2200 $\mu C/cm^2$

AR-P 6200 (CSAR) - standard positive resist @ DTU Danchip

~ 50 nm CSAR exposed at 0.2 nA dose ~ 300 μ C/cm2 50 sec C₄F₈/SF₆ etch at -20 °C (DRIE)

Etch of nano structures (CSAR)

2:30 min C₄F₈/SF₆ continous etch at -20 °C (DRIE) selectivity CSAR:Si is ~1:3

6 min C₄F₈/SF₆ Bosch etch at -20 °C (DRIE) selectivity CSAR:Si is ~1:38

Hands-on JEOL JBX9500

Excel patterns

Excel patterns

DTU Danchip National Center for Micro- and Nanofabrication

Literature & references

Lithography, Michael Wang (Editor), INTECH 2010

SPIE Handbook of Microlithography, Micromachining and Microfabrication, Volume 1: Micro-lithography, Section 2.3 Electron-Solid Interactions

Lithography, Stefan Landis (Editor), Wiley 2010

<u>ammrf.org.au</u>

<u>cnf.cornell.edu</u>

JEOL

Optimizing electron beam lithography in the nanometer range, Vladimir Zlobin, 13 April 2006, SPIE Newsroom

DTU Danchip National Center for Micro- and Nanofabrication