
1 The mask layout

The mask is divided into 1×1 cm cells each of which has an opening density of 50 %. The Cells A01-A09 are to be used for standardization of OH_polya in the RIE's. The dotted lines \cdots indicate possible cleavage lines for profile inspection in a SEM.

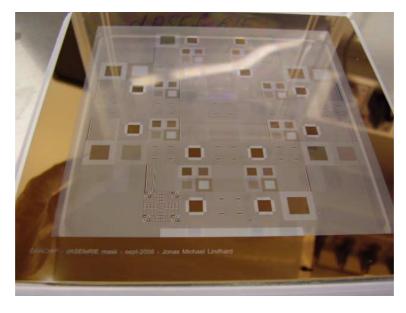
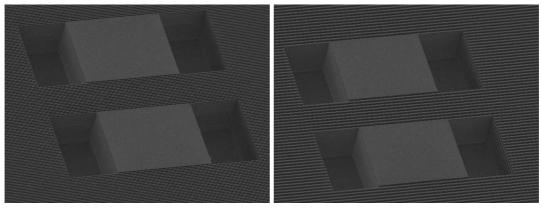
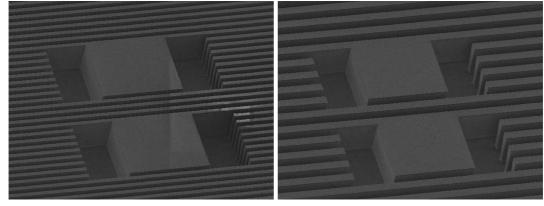


Figure 1: The dASEfeRIE mask


The text on the mask reads:

DANCHIP - dASEfeRIE mask - sept-2008 - Jonas Michael Lindhard

Date: April 15, 2009	Responsible: JML	Approved by:	Version: 1


RIE Dektak fields

IE: Dektak fields. Numbered A01 to A13

of the Dektak field.

(a) The field with 5 μ m lines in the upper left corner (b) The field with 10 μ m lines in the upper right corner of the Dektak field.

(c) The field with 25 μ m lines in the lower left corner (d) The field with 50 μ m lines in the lower right corner of the Dektak field. of the Dektak field.

Figure 2: The Dektak is split into 4 areas with different linewidths. In the SEM images above they are etched with the deepetch recipe on the ASE - as such they are far too deep to be measured in the Dektak.

Split into 4 5000 \times 5000 μ m squares with 5, 10, 25 and 50 μ m lines respectively. In the center of each square is a special $1000 \times 1000 \ \mu m$ field for Dektak analysis. The numbers are located in the lower left corner and are to be read from above.

Date: April 15, 2009 Responsib	le: JML Approved by:	Version: 1
--------------------------------	----------------------	------------

3 ASE fields for cleaving

ASE: Fields for cleaving. Number indication

Split into 2 5000×10000 μ m squares with 4 and 50 μ m lines respectively. The fields are rotated so that the 4 μ m lines face towards the center of the wafer. The number of the field is indicated between the 4 and 50 μ m lines, see figure.

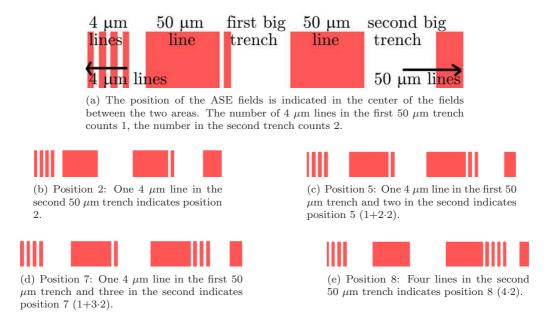
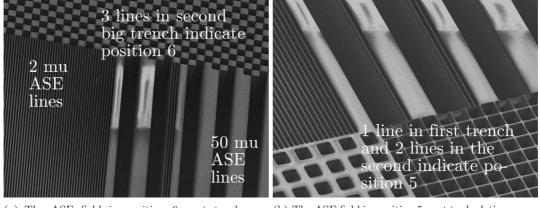



Figure 3: The numbering of the positions of the ASE fields makes it possible to tell the position when viewing the cleaved profile in a SEM.

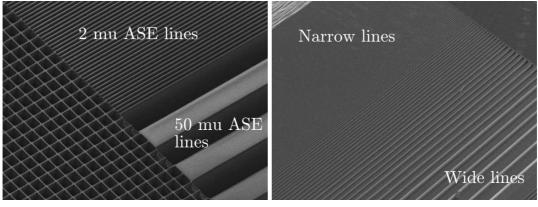
(a) The ASE field in position 6 next to dummy (b) The ASE field in position 5 next to depletion range squares.

Figure 4: Top view SEM images of the ASE fields showing the center between the 2 μ m and 50 μ m lines where the position on the wafer is indicated. For proper SEM inspection the wafer should be cleaved perpendicular to these lines.

Date: April 15, 2009	Responsible: JML	Approved by:	Version: 1

4 ASE fields for cleaving

ASE: Fields for cleaving. No numbering


Split into 2 5000×10000 μm squares with 4 and 50 μm lines respectively.

5 ARDE fields

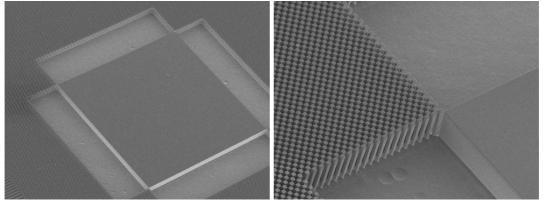
ARDE: Fields with different linewidths for cleaving. No numbering

The field contains lines with different widths as tabulated below. (With a global etch load of 50 % the pitch of the lines must be the same as the width.)

Line	Number	Width	End of	Line	Number	Width	End of
width	of lines	of field	field	width	of lines	of field	field
(μm)		(μm)	(μm)	(μm)		(μm)	(μm)
2	155	620	0	40	8	640	4910
3	100	600	620	50	6	600	5550
4	75	600	1220	75	5	750	6150
6	50	600	1820	100	4	800	6900
8	40	640	2420	150	3	900	7700
10	25	500	3060	200	2	800	8600
15	20	600	3560	300	1	600	9400
25	15	750	4160				

(a) The ASE field without position indicators.

(b) The ARDE field


Figure 5: SEM images of the ASE and ARDE fields.

Date: April 15, 2009	Responsible: JML	Approved by:	Version: 1
----------------------	------------------	--------------	------------

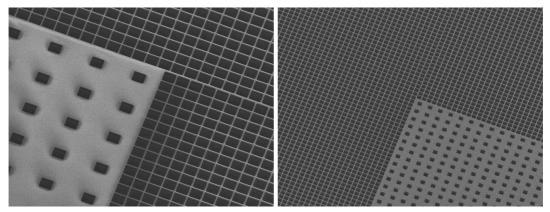
6 Filmtek fields

PRetch: Photeresist etch field. No numbering

The center 4×4 mm field has no structure allowing the photoresist etch rate to be determined using the Filmtek prior and after etching.

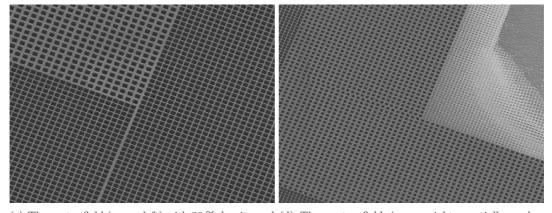
(a) The center field where the mask etch rate may be (b) A close-up of the corner of the center Filmtek field. measured using the Filmtek.

Figure 6: SEM images of the Filmtek fields.


Date: April 15, 2009	Responsible: JML	Approved by:	Version: 1

Depletion range fields

Depletion: Variation of etch load in the center. No numbering


Split into 4 5000×5000 μm squares. These squares have a 3000×3000 μm center field and a 1000 μm wide outside perimeter. The density of 20 μ m squares in the center field is varied according to the table below. The density of the outside perimeter is adjusted to give a total load of 50 %.

Center 3000×3000 μm field			Outside	e perim	eter		
$20~\mu\mathrm{m}$	Pit	tch	Load	$20\mu \text{m} \text{ array}$	Pit	tch	Load
Array	X	Y	%	$1000 \times 4000 \ \mu \text{m}$	X	Y	%
40×40	75	75	7.1	43×173	23.3	23.1	74.4
60×60	50	50	16	42×166	23.8	24.1	69.7
90×90	33.3	33.3	36	38×153	26.3	26.1	58.1
135×135	22.2	22.2	81	29×113	34 5	35 4	32.8

side perimeter with 74.4 % density.

(a) The center field (left) with 7.1 % density and out- (b) The center field (right) with 16 % density and outside perimeter with 69.1 % density.

(c) The center field (upper left) with 36 % density and (d) The center field (upper right, partially underoutside perimeter with 58.1~% density.

etched) with 81 % density and outside perimeter with 32.8~% density.

Figure 7: The 4 fields of the depletion range field.

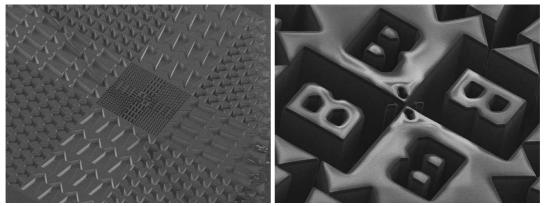
Date: April 15, 2009	Responsible: JML	Approved by:	Version: 1
Date: 11pm 19, 2000	responsible: ovil	ripproved by.	VCIBIOII. 1

Big depletion fields

Big depletion: Variation of etch load in the center. No numbering

The 4 different etch loads collected in the depletion field (the 4 $5000 \times 5000 \mu m$ square fields above) are enlarged to make an entire field. There is a $6000 \times 6000 \mu m$ center field and a 2000 μm wide outside perimeter. The density of 20 μ m squares in the center field is varied (the values are shown on the figure) according to the table below. The density of the outside perimeter is adjusted to give a total load of 50

Center	$6000 \times$	6000	μm	field
--------	---------------	------	---------	-------


Outside perimeter

$20~\mu\mathrm{m}$	Pi	tch	Load	$20\mu\mathrm{m}$ array	Pit	tch	Load
Array	X	Y	%	$1000 \times 4000 \ \mu \text{m}$	X	Y	%
80×80	75	75	7.1	86×345	23.3	23.2	74.2
120×120	50	50	16	83×333	24.1	24.0	69.1
180×180	33.3	33.3	36	76×306	26.3	26.1	58.1
270×2700	22.2	22.2	81	58×226	34.5	35.4	32.8

9 Deskew points

Deskew points A and B

Deskew points A and B for Dektak automated runs.

(a) Overview of the Deskew point B with arrows point- (b) A close-up of the Deskew point in the center. ing towards the center.

Figure 8: SEM images of Deskew point B.

10 Dummy structures

Dummy structures

Dummy structures: Checkboard of $25 \times 25 \mu m$ squares, 50 % load.

		1	
Date: April 15, 2009	Responsible: JML	Approved by:	Version: 1