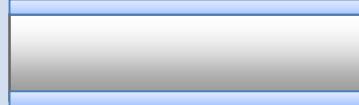
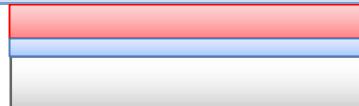
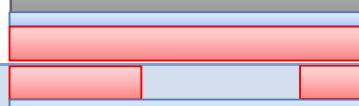


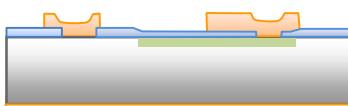
Process flow title							Revision
DTU Nanolab - Solar cell process							2.6
 DTU Nanolab National Centre for Nano Fabrication and Characterization			Contact email		Contact persons		Contact phone
			jehan@dtu.dk		Jesper Hanberg		45255828
			kabi@dtu.dk		Karen Birkelund		452556436
			mmat@dtu.dk		Maria Matschuk		452555723
			Labmanager group	Batch name	Date of creation	Date of revision	
			-	May 2024	24 May 2016	13-Jan-25	

Objective

This process was originally used in the UV-lithography Green Belt course organized by DTU Nanolab (in 2016). This is an updated version (April 2024). The purpose is to provide an example process flow and to educate Cleanroom users in general UV-lithographic techniques. The outcome are test wafers with solar cells.




Substrates									
Substrate	Orient.	Size	Doping/type	Polish	thickness	Box	Purpose	#	Sample ID
Silicon	<100>	4"	p(Boron)	SSP	525±25µm		Device wafers	6	S1-S6
Silicon	<100>	4"	p (Boron)	SSP	525±25µm		Test wafers	4	T1-T4
Silicon	<100>	4"	p (Boron)	SSP	525±25µm		Dummy wafers	2	D1-D3

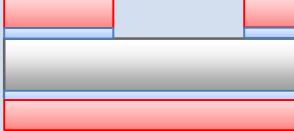
* Test wafers: T1-T4 used for quality control (measurements) in between process steps


Dummy wafers: D1-D3 are used to measure furnace performance (from RCA shelf)

Other dummy wafers: need to be purchased and can be used (if wanted) to improve the uniformity in furnace processes

Figures

Figure	Caption	Step	Figure
1	After SiO ₂ oxidation	1.2	
2	After Spin coating	2.3	
3	After UV lithography (mask layer 1: N+ doped area)	2.5	
4	After SiO ₂ etch in BHF	3.1	
5	After Strip resist	3.4	



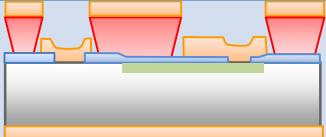
Process flow title	Rev.	Date of revision	Contact email
DTU Nanolab - Solar cell process	2.6	13-Jan-25	jehan@dtu.dk

6	After Phosphor predep	4.2	
7	After SiO2 etch in BHF	4.3	
8	After thermal oxidation of SiO2	4.5	
9	After UV lithography (mask layer 2: contacts)	6.3	
10	After SiO2 etch in BHF	7.2	
11	After resist strip	7.4	
12	After lithography (mask layer 3: metal)	8.4	
13	After metal deposition	9.2	
14	After lift-off	9.34	

Process flow title DTU Nanolab - Solar cell process	Rev. 2.6	Date of revision 13-Jan-25	Contact email jehan@dtu.dk
---	--------------------	--------------------------------------	--------------------------------------

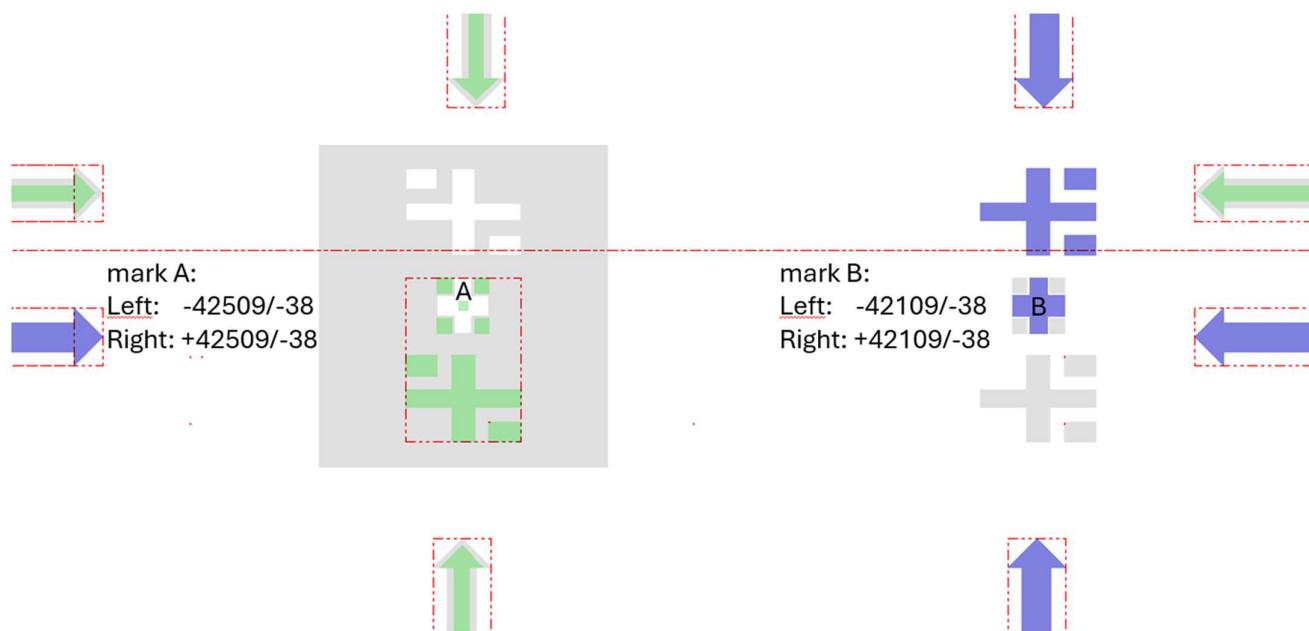
Step Heading	Equipment	Procedure	Comments
1 SiO₂ Dry Oxidation (Creating SiO ₂ protection layer (and insulator/protection) for areas not to be doped)			Wafer S1-S6, T1-T3, D1 from Nanolab, 2 dummy wafer
1.1 RCA clean	RCA bench	Follow standard procedure.	All wafers, incl dummies need to be RCA cleaned
1.2 SiO ₂ dry oxidation	Boron Drive-in (A1)	Place D1 in the center of the boat and place device and test wafers equally distributed on each side of D1. No spacing between wafers. Place two dummy wafer on each side outermost (to improve uniformity). <i>Target thickness: 150±10nm</i> <u>Recipe: Dry1050</u> <i>Oxidation time: 170 min</i> <i>Anneal: 20 min</i>	
2 UV Lithography– 1.5µm AZ5214E (Create mask for doping of active areas)			Wafer S1-S6
2.1 Surface treatment	Oven HMDS-2	Coat all wafers with HMDS <u>Recipe: program 01</u> <i>Time: ca. 30 min</i>	
2.2 Spin Coating - backside -	Spin Coater: UV Gamma	Coat backside of the device wafers with 1.5 µm AZ 5214E resist <u>Recipe: 3412 DCH 100 mm AZ 5214E 1.5 µm prox bake</u> <i>Spin-off time: 50-60 s</i> <i>Soft Bake Temp: 100°C (proximity)</i> <i>Soft-Bake time: 65 sec</i> <i>without HMDS</i>	Check Spinner nozzle and clean with dummy wafer (if required)
2.3 Spin Coating - frontside -	Spin Coater: UV Gamma	Coat frontside of the device wafers with 1.5 µm AZ5214E resist <u>Recipe: 3412 DCH 100 mm AZ 5214E 1.5 µm prox bake</u> <i>Spin-off time: 50-60 s</i> <i>Soft Bake Temp: 100°C (proximity)</i> <i>Soft-Bake time: 65 sec</i> <i>without HMDS</i>	
2.4 Exposure	Maskless Aligner 3 (MLA-3)	Mask layer: "layer 1 - N+ doped areas" <i>Mode: Quality (ca. 15-25 min), Fast (8-10 min)</i> <i>Dose: 105 mJ/cm²</i> <i>Defocus: 2</i> <i>Laser: 375 nm</i>	<i>Note: 405 nm require increased dose; dose and defoc not very critical for solar cell design itself</i> <i>MA6 Aligner: mask: "n+ doped", Alignment to marks on wafer, Hard contact, duration: 5 sec</i>
2.5 Develop	TMAH UV-lithography	Develop exposed resist in TMAH <u>Recipe: 1002 DCH 100 mm SP60s</u> <i>Dev time: 60 s</i>	
2.6 Inspection	Optical microscope	Check pattern and alignment marks	

Process flow title DTU Nanolab - Solar cell process	Rev. 2.6	Date of revision 13-Jan-25	Contact email jehan@dtu.dk
---	--------------------	--------------------------------------	--------------------------------------


3 SiO₂ Wet Etch <i>(Remove SiO₂ in unmasked areas (areas to be doped))</i>			Wafer S1-S6
3.1 SiO ₂ etch	Oxide etch 2: BHF (Wet bench 04)	Etch SiO ₂ in exposed areas in BHF. Etching rate: 75-80 nm/min. Rinse in DI water. <i>Etch time: 2-2½ min</i> <i>DI rinse: 5 min ± 30 sec</i>	
3.2 Drying	Spin dryer	Transfer wafer box into spin dryer	
3.3 Inspection	Optical microscope	Check pattern and alignment marks	
3.4 Strip resist	Plasma Asher 4 (Resist Strip)	<i>Recipe: 18</i> <i>Time: 30 min</i> <i>O2 flow: 400</i> <i>N2 flow: 70</i> <i>Power: 1000 W</i>	<i>Alternative Resist Strip: 10 min</i>
3.5 Inspection	Dektak XTA	Measure step height of one or two device wafers Target: 150±10 nm	Wafer S1-S6 Note in measurement sheet
4 Phosphor Doping <i>(Doping with phosphor - silicon in "open areas")</i>			Wafer S1-S6, T1-T4, D2-D3 from Nanolab, 2 dummy wafer
4.1 RCA clean	RCA bench	Follow standard procedure but <u>without HF dip</u> . All wafers, incl dummies need to be RCA cleaned	Wafer S1-S6, T1-T4, D2-D3, 4 dummy wafer (D2 for A4-furnace, D3 for A3-furnace) <u>No HF</u> RCA clean 4 dummy wafers for A4 (2) and A3 (4). Dummies from A4 can be re-used for A3.
4.2 Phosphor doping (gas: POCl ₃)	Furnace: Phosphorus Predep (A4)	Place D2 in the center of the boat and place device and test wafers equally distributed on each side of D2. No spacing between wafers. Front-side to the left. Place one new dummy wafer on each side outermost to device wafers (to prevent unintended doping from "used" dummy). Place two dummy wafers on each side outmost (to improve uniformity). Target doping : R _{sheet} =40 Ω ² <i>Recipe: POCL950</i> <i>Time: 15 min</i> <i>Anneal: 20 min</i>	Wafer S1-S6, T1, T4, D2, 2 dummy wafers Note diffusion time in furnace A4-logbook
4.3 Measure resistivity	4 Point Probe	Measure resistivity on D2	Note in measurement sheet. Fill out furnace A4-logbook (with D2).
4.4 Etch of phosphor glass for doped wafers	BHF in RCA bench	Removes all phosphor glass and only some of the dry oxide. <i>Time: exactly 30 sec</i>	Wafer S1-S6, T1, T2 <i>Note that the wafer becomes hydrophobic.</i>

Process flow title DTU Nanolab - Solar cell process			Rev. 2.6	Date of revision 13-Jan-25	Contact email jehan@dtu.dk
4.5 Inspection	FilmTek 4000 (alt. Ellipsometer)	Measure remaining oxide thickness of T1 and T2 and calculate how much Phosphorglass/doped SiO ₂ and SiO ₂ has been etched. Target thickness: 150 – 70 ±10 nm	Note in measurement sheet.		
5 SiO₂ Dry Oxidation (Creating SiO ₂ insulation layer)					Wafer S1-S6, T3, T4, D3
5.1 SiO ₂ dry oxidation	Phosphor Drive-in (A3)	Place D3 in the center of the boat and place device and test wafers equally distributed on each side of D3. Front-side to the left. No spacing between wafers. Place two dummy wafer on each side outermost (to improve uniformity). Target thickness: 90 ±10nm <u>Recipe: Dry1050</u> <i>Oxidation time: 75 min</i> <i>Anneal: 20 min</i>	Wafer S1-S2, T3, T4, D3, 2 dummy wafers		Note result in the furnace log (D2) and in measurement sheet.
5.2 Inspection	FilmTek 4000 (Ellipsometer)	Measure oxide final thickness. Target thickness: 90 ±10 nm (dummy D3) T3 (80+90 ±10 nm) T4 (ca. 90 ±10 nm)	Fill out A3-furnace logbook. <i>Note: This measurement cannot be done between both furnaces (A4 and A3), else another RCA is required.</i>		
5.3 Measure resistivity	4 Point Probe	Measure resistivity on T4	Note in measurement sheet		
6 UV Lithography – 1.5µm AZ5214E (Create mask for etching of SiO ₂ to open “free access” to silicon for metal contacts)					Wafer S1-S6
6.1 Spin Coating - frontside -	Spin Coater: Gamma UV	Coat the wafers with 1.5 µm positive resist AZ5214E (Spin-off: 30-60 s; Soft Bake at Temp: 90°C, time: 90 sec) <u>Recipe: 3411 DCH 100mm 5214E 1.5um HMDS</u> <i>Spin-off time: 55 s</i> <i>Soft Bake Temp: 100°C (proximity)</i> <i>Soft-Bake time: 65 sec</i> <i>without HMDS</i>			
6.2 Exposure	Maskless Aligner MLA-3 (MLA-2, MA-6)	Mask layer: “layer 2 - contacts” <i>Mode: Quality (ca. 20-25 min), Fast (4-7 min)</i> <i>Dose: 105 mJ/cm²</i> <i>Defocus: 2</i> <i>Laser: 375 nm</i> <i>Alignment: check location for alignment marks in design file</i>	<i>Note: 405 nm requires increased dose</i> <i>MA6 Aligner: mask: “contacts”, Alignment to marks on wafer, Hard contact, duration: 5 sec</i>		
6.3 Develop	Developer: TMAH UV-Lithography	Develop in TMAH <u>Recipe: 1002 DCH 100 mm SP60s</u> <i>Dev time: 60 s</i>			
6.4 Inspection	Optical microscope	Check pattern and alignment			

Process flow title DTU Nanolab - Solar cell process	Rev. 2.6	Date of revision 13-Jan-25	Contact email jehan@dtu.dk
---	--------------------	--------------------------------------	--------------------------------------


7 SiO₂ Wet Etch (Etching of SiO ₂ to open "free access" to silicon for metal contacts)			Wafer S1-S6
7.1 SiO-etch	Oxide etch 2: BHF	Etch SiO ₂ in exposed areas in BHF. Etching rate: 75-80 nm/min. Rinse in DI water. <i>Etch time: 2-2½ min</i> <i>DI rinse: 5 min ± 30 sec</i>	Note that the backside becomes hydrophobic.
7.2 Drying	Spin dryer	Transfer wafer box into spin dryer	
7.3 Inspection	Optical microscope	Check pattern and alignment	
7.4 Strip resist	Plasma Asher 2	<u>Recipe: 18</u> <i>Time: 30 min</i> <i>O2 flow: 400</i> <i>N2 flow: 70</i> <i>Power: 1000 W</i>	
7.5 Inspection	Dektak XTA	Measure step height between Si-P (N+) and SiO ₂ on device wafers Target: 90±10 nm in N+ areas Target: 130±10 nm in un-doped areas	
8 Lithography – 2.0µm n-LOF2020 (Create mask for deposition and lift-off for metal contacts)			Wafer S1-S6
8.1 Coat Wafers	Spin Coater: Gamma UV	Coat the wafers with 2.0 µm negative resist nLOF 2020 <u>Recipe: 2420 - DCH 100mm nLOF 2020 2 um</u> <i>Soft Bake temp: 110°C</i> <i>Soft Bake time: 60 sec</i>	
8.2 Transport of wafers	non-transparent transport box	Transport wafers inside a black or blue transport box	To avoid unwanted exposure from the white light in the cleanroom.
8.3 Exposure	MLA-2 (MA-6)	Mask layer: "layer 3 - metal" <i>Mode: Quality (ca. 45 min), Fast (ca. 20-25 min)</i> <i>Dose: 550 mJ/cm²</i> <i>Defocus: 0</i> <i>Laser: 375 nm (!)</i> <i>Alignment: check location for alignment marks in design file</i>	<i>Note: nLoF 2020 requires MLA-2 due to wavelength;</i> <i>MA6 Aligner: mask: "metal", Alignment to marks on wafer, Hard contact, duration: 5 sec</i>
8.4 Post Exposure Bake and Develop	Developer: TMAH UV-Lithography	Post Exposure Bake and Development <u>Recipe: 3001 DCH 100mm PEB60s@110C+SP60s</u> <i>PEB temp: 110°C</i> <i>PEB time: 60 sec;</i> <i>Dev time: 60 s</i>	Fill out the logbook.
8.5 Inspection	Optical microscope	Alignment check	

Process flow title DTU Nanolab - Solar cell process	Rev. 2.6	Date of revision 13-Jan-25	Contact email jehan@dtu.dk
---	--------------------	--------------------------------------	--------------------------------------

9 Aluminum pattern <i>(Deposition of metal contacts)</i>			
Wafer S1-S6			
9.1 Aluminum deposition - frontside -	E-Beam Evaporator (Temescal)	Deposition of Titanium and Aluminum on front side <i>Thickness: 50 nm Ti + 300 nm Al</i>	Titanium acts as barrier layer to avoid diffusion of aluminum into silicon
9.2 Aluminum deposition - backside -	E-Beam Evaporator - 10 pockets	Deposition of Aluminum on back side <i>Thickness: 300 nm Al</i>	
9.3 Lift-off	Lift-off (D-3)	Remove resist using Remover 1165 for 2-3 min. Temperature: 45 °C. Start the ultrasound for 10 min. Rotate wafers and start ultrasound for another 10 min. Rinse in DI water for 5 min (300±30 sec).	Fill out the logbook.
9.4 Drying	Spin dryer	Transfer wafer box in dedicated transport box (single green or yellow dots) into spin dryer	
9.5 Inspection	Optical microscope	Check for complete lift-off	
9.6 Annealing	Furnace: Al Anneal (C4)	Anneal wafers for 15min at Temp: 400 °C <i>Recipe: ANN400</i>	Fill out the logbook.
9.7 Inspection	Dektak	Measure thicknesses (on front and back).	
9.8 Inspection	4 Point Probe	Measure metal sheet resistance on backside.	

Process flow title DTU Nanolab - Solar cell process	Rev. 2.6	Date of revision 13-Jan-25	Contact email jehan@dtu.dk
---	--------------------	--------------------------------------	--------------------------------------

Alignment Marks

