LabAdviser/314/Preparation 314-307/Soft-matter: Difference between revisions

From LabAdviser
Mktracy (talk | contribs)
No edit summary
Mktracy (talk | contribs)
 
(113 intermediate revisions by 2 users not shown)
Line 2: Line 2:
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/LabAdviser/314/Preparation_314-307/Soft-matter click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/LabAdviser/314/Preparation_314-307/Soft-matter click here]'''


''This section is written by DTU Nanolab internal if nothing else is stated.''
[[Category:314]]
[[Category:314]]
[[Category:314-Preparation]]
[[Category:314-Preparation]]
Line 11: Line 12:


== Leica EM GP2 ==
== Leica EM GP2 ==
Plunge freezing is a cryo-fixation method used to preserve samples in their most native state prior to cryo-electron microscopy. The EM GP2 plunge freezes fluid or extremely thin samples spread on an electron microscopy grid into liquid ethane after removing excess fluid by automatic blotting. Prior to freezing, the sample is maintained in a temperature and humidity controlled environmental chamber, adjustable between +4°C and +60°C and room humidity to 99 %.  
Plunge freezing is a cryo-fixation method used to preserve samples in their native state prior to cryo-electron microscopy. The EM GP2 plunge freezes fluid or extremely thin samples spread on an electron microscopy grid into liquid ethane and afterwards excess fluid is removed by automatic blotting. Prior to freezing, the sample is maintained in a temperature and humidity controlled environmental chamber which is adjustable between +4°C and +60°C and room humidity to 99 %.  




The main steps of this technique proceed as follows:<br />  
The main steps of this technique is as follows:<br />  
1. The sample is spread into a thin film across an EM grid <br />  
1. The sample is spread onto a glow discharged EM grid <br />  
2. The liquid droplet is then blotted with filter paper until only a very thin film of fluid remains <br />  
2. The liquid droplet is then blotted with filter paper until only a very thin film of fluid remains <br />  
3. The grid is then rapidly plunged into a cryogen (usually liquid ethane) <br />  
3. The grid is then rapidly plunged into a cryogen (usually liquid ethane) <br />  
Line 21: Line 22:




Operating manual: [[:File:Leica EM GP2 Operating manual.pdf]]<br />  
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=Leica_EM_GP2_Operating_manual.pdf Operating manual] ''- requires login''<br />  


[[File:Plunge Freezer (2).jpg|400px|left|thumb|Leica EM GP2 Location at DTU Nanolab Building 314 Room 014 (Tecnai T20 room)]]<br clear="all" />
[[File:Plunge Freezer (2).jpg|400px|left|thumb|Leica EM GP2 Location at DTU Nanolab Building 314 Room 014 (Tecnai T20 room)]]<br clear="all" />
Line 65: Line 66:
== RMC MT-7 Microtome ==
== RMC MT-7 Microtome ==


Our RMC MT-7 Microtome is a vintage piece of equipment and can be used for planning specimens for SEM/EDX and/or for cutting relative thin slices (approx. 200nm thick) for TEM. First, the specimen needs to be embedded into a resin or an epoxy, and then can be sliced with a glass or diamond knife.   
Our RMC MT-7 Microtome is a vintage piece of equipment and can be used for specimen sample preparation for SEM/EDX analysis and/or for cutting relative thin slices (approx. 200nm thick) for TEM analysis. First, the specimen needs to be embedded into a resin or an epoxy, and then can be sectioned using a glass or diamond knife.   




Line 75: Line 76:


== Leica EM UC7 Ultramicrotome==
== Leica EM UC7 Ultramicrotome==
The Ultramicrotome Leica EM UC7 provides easy preparation of semi- and ultrathin sections as well as perfect, smooth surfaces of biological and industrial samples for TEM, SEM, AFM and LM examination. Combining ergonomic design and innovative technology the Ultramicrotome Leica EM UC7 sets new standards in Ultramicrotomy. It offers a range of outstanding features and benefits of use for the ultramicrotomist, whether highly skilled or absolute beginners.
The Ultramicrotome Leica EM UC7 provides easy sample preparation of ultrathin sections for TEM, SEM, AFM and LM application. It is suitable for highly skilled or absolute beginners. The Leica ultramicrotome can provide ultra thin sectioning of sample embedded in a resin/epoxy block with a feed range of 1 nm up to 15 µm. Glass or diamond knife can be used for the ultra sectioning of the samples.  
 
 
The Leica ultramicrotome is used for ultra thin sectioning of sample embedded in resin block with a feed range of 1 nm up to 15 µm. Glass or diamond knife can be used for the ultra sectioning of the samples.  




Line 84: Line 82:
1. Mount sample <br />
1. Mount sample <br />
2. Mount glass or diamond knife to knife holder <br />
2. Mount glass or diamond knife to knife holder <br />
3. Trimming and ultrasectioning of sample <br />
3. Trimming or ultrasectioning of sample <br />
4. Fishing sections <br />
4. Fishing sections <br />
5. Transfer to an EM grid <br />
5. Transfer to an EM grid <br />
6. EM imaging <br />




Operating manual: [[:File:EM UC7 Operating manual.pdf]]<br />
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=EM_UC7_Operating_manual.pdf Operating manual] ''-requires login''<br />


[[File:Leica EM UC7.jpg|400px|left|thumb|Leica EM UC7 Location at DTU Nanolab Building 307 Room 906]]<br clear="all" />
[[File:Leica EM UC7.jpg|400px|left|thumb|Leica EM UC7 Location at DTU Nanolab Building 307 Room 906]]<br clear="all" />
For further information about the equipment usage or training contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
 
'''Requirement for training:''' Completion of the DTU Epoxy course and purchased of own diamond knife. For further information about the equipment usage or training contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


== Leica EM FC7 Cryo-Ultramicrotome ==
== Leica EM FC7 Cryo-Ultramicrotome ==
Within minutes the Leica EM UC7 ultramicrotome can change to a cryo-ultramicrotome by mounting the cryo chamber EM FC7. Cryo-sections (-15° to -185°C) can be prepared for TEM, SEM, AFM and LM.
Within minutes the Leica EM UC7 ultramicrotome can be change to a cryo-ultramicrotome by mounting the cryo chamber EM FC7. Using the cryo-ultramicrotome, cryo-sections (-15° to -185°C) can be prepared for TEM, SEM, AFM and LM applications.




Line 104: Line 102:
1. Set up the cryo chamber EM FC7 to the EM UC7 apparatus <br />
1. Set up the cryo chamber EM FC7 to the EM UC7 apparatus <br />
2. Mount both the trim and sectioning diamond knives to the knive holder and set up in the cryo chamber <br />
2. Mount both the trim and sectioning diamond knives to the knive holder and set up in the cryo chamber <br />
3. Fill up liquid nitrogen Dewar <br />
3. Connect the pump tube between the liquid nitrogen Dewar and the ultramicrotome apparatus <br />
4. Set pump between the liquid nitrogen Dewar and the ultramicrotome apparatus <br />
4. Fill up liquid nitrogen Dewar <br />
5. Let equipment to cool down for 1 hour <br />  
5. Let equipment to cool down for 1 hour <br />  
6. Meanwhile prepare samples <br />  
6. Meanwhile prepare samples (Cut big samples to smaller pieces) <br />  
7. Mount sample <br />
7. Freeze sample in liquid nitrogen and mount sample <br />
8. Trimming and ultrasectioning of sample <br />
8. Trimming and ultrasectioning of sample <br />
9. Collecting sections and transfer to an EM grid <br />
9. Collecting sections and transfer to an EM grid <br />




Operating manual: [[:File:EM FC7 Operating manual.pdf]]<br />  
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=EM_FC7_Operating_manual.pdf Operating manual] ''- requires login''<br />  


[[File:EM FC7.jpg|400px|left|thumb|Leica EM FC7 Location at DTU Nanolab Building 307 Room 906]]<br clear="all" />
[[File:Leica EM FC7 Cryo-Ultramicrotome.jpg|400px|left|thumb|Leica EM FC7 Location at DTU Nanolab Building 307 Room 906]]<br clear="all" />
For further information about the equipment usage or training contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
 
'''Requirement for training:''' Purchased of own diamond knife. For further information about the equipment usage or training contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />
Line 122: Line 121:
= KnifeMaker=
= KnifeMaker=
== LKB Knifemaker 7801A ==
== LKB Knifemaker 7801A ==
At DTU Nanolab we offer the possibility to make glass knives using the LKB Knifemaker 7801A.
At DTU Nanolab we offer the possibility to make glass knives for ultramicrotomy applications using the LKB Knifemaker 7801A.




Manual of LKB Knifemaker 7801A: [[:File:LKB Knifemaker 7800B Manual.pdf]]
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=LKB_Knifemaker_7800B_Manual.pdf Manual of LKB Knifemaker 7801A] ''- requires login'' <br />


[[File:Knifemaker.jpg|300px|thumb|left|LKB Knifemaker Location at DTU Nanolab Building 307 Room 906]]<br clear="all" />
[[File:Knifemaker.jpg|300px|thumb|left|LKB Knifemaker Location at DTU Nanolab Building 307 Room 906]]<br clear="all" />
Line 135: Line 134:
== Leica EM CPD300 ==
== Leica EM CPD300 ==


The CPD is used to preserve the sample’s morphology. Since air drying would cause severe deformation and collapse of structure due to the effects of high surface tension to air, the water in the biological specimen is replaced with a suitable inert fluid (“transitional fluid”-CO2) which has a lower surface tension to air. This would thus reduce severe structural damages during air-drying.  
The CPD allows for ideal preservation of specimen's microstructures during drying processes prior to SEM analysis. Since air drying could cause severe deformation and collapse of microstructure due to the effects of high surface tension to air, the water in the biological specimen is replaced with a suitable inert fluid (“transitional fluid”-CO2) which has a lower surface tension to air. This would thus reduce severe structural damages during drying processes.  




Because liquid CO2 is not sufficiently miscible with water, a third medium commonly Acetone or Ethanol is used as “intermediate fluid”. The specimen is first dehydrated through varying concentrations of the intermediate fluid and thus completely replacing the water in the specimen. Afterwards, the “intermediate fluid” is replaced with the “transitional fluid” (CO2) which can then convert from liquid to gas phase without surface tension effects which distort morphology and ultra-structure.
Because liquid CO2 is not sufficiently miscible with water, a third medium commonly Acetone or Ethanol is used as “intermediate fluid”. The specimen is first dehydrated through various concentrations of the intermediate fluid and thus completely replacing the water in the specimen. Afterwards, the “intermediate fluid” is replaced with the “transitional fluid” (CO2) which can then convert from liquid to gas phase without surface tension effects which distort morphology and ultra-structure.






Operating manual: [[:File:EM CPD300 Operating manual.pdf]] <br />  
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=EM_CPD300_Operating_manual_small.pdf Operating manual] ''- requires login'' <br />  


[[File:EM CPD300.jpg|300px|thumb|left|Leica EM CPD300 Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
[[File:EM CPD300.jpg|300px|thumb|left|Leica EM CPD300 Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
Line 153: Line 152:




[[File:TS9026 Drying oven.jpg|400px|thumb|left|TS9026 Drying oven Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
Specifications:
* Temperature range is from 2°C to 250°C
* Fan speed is 0 to 10
* Capacity is 26L
 
[[File:IMG 9634.jpg|400px|thumb|left|TS9026 Drying oven Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= Mini tube rotator =
= Sonic Dismembrator =
The Fisherbrand Model 505 sonic dismembrator apparatus applies sound energy to agitate particles in a sample. For biological applications, sonication may be sufficient to disrupt or deactivate a biological material. For example, sonication is often used to disrupt cell membranes and release cellular contents. In nanotechnology sonication is commonly used for evenly dispersing nanoparticles in liquids.
 
[[File:IMG_9633.jpg|400px|thumb|left|Fisherbrand Model 505 Sonic Dismembrator Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


The mini-tube rotator is designed for rotating various sized laboratory tubes at a variety of mixing angles at speeds ranging from 4 to 18 min–1. Ideal for mixing and separation processes involved in molecular biology, histochemistry and clinical applications.
<br clear="all" />


= Preparation equipment =
== Mini tube rotator ==
The mini tube rotator can be used for rotating various sized laboratory tubes at several mixing angles at speeds ranging from 4 to 18 min–1.
Specifications:
* Variable speed with LCD display
* Variable speed with LCD display
* Digital microprocessor control
* Digital microprocessor control
Line 168: Line 183:
* Cold room and incubator compatible
* Cold room and incubator compatible


[[File:IMG_9636.jpg|400px|thumb|left|Mini tube rotator Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


[[File:Mini tube rotator.jpg|200px|thumb|left|Mini tube rotator Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
<br clear="all" />
 
== Mini Centrifuge ==
The Eppendorf Mini Spin plus centrifuge is a desktop centrifuge and has a user friendly digital display for time and speed.
 
 
Specifications:
* Max. capacity 12 x 1.5/2.0 mL
* Max. RCF 14 100 g
* Speed 800 - 14 500 rpm (100 rpm steps)
* Acceleration time 13 s
* Timer 15 s to 99 mins
 
 
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=Eppendorf_Mini_Spin_plus_centrifuge_Original_Instructions.pdf Instruction manual] ''- requires login'' <br />
 
[[File:Mini Spin centrifuge.jpg|400px|thumb|left|Eppendorf Mini Spin centrifuge Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= Centrifuge =
== Magnetic stirrer ==
The Eppendorf Mini Spin plus centrifuge is a desktop centrifuge with supplied rotor with maximum speed/force 13,400rpm/12,100xG. It has a 30-minute timer, which is settable in 15-sec increments. It has a short-spin mode fixed at maximum speed. The Mini Spinner Eppendorf is located in building 314, in the Soft Mater (toxic) Lab.
 
The myPlate magnetic stirrer is ideal for homogeneous mixing of chemicals.




Instruction manual: [[:File:Eppendorf Mini Spin plus centrifuge_Original Instructions.pdf]]
Specifications:
*High chemical resistance
*Can be used at 5 to 40 °C (80% relative humidity), in an incubator or cold room
*Speed range 100 to 2500 (min-1)


[[File:Mini Spin centrifuge.jpg|300px|thumb|left|Eppendorf Mini Spin centrifuge Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
[[File:myPlate magnetic stirrer.jpg|400px|thumb|left|myPlate magnetic stirrer Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= pH meter =
== Pulsing Vortex Mixer ==
If you are planning on doing chemical fixation on biological samples you will probably need to make buffers and use a pH-meter. The VWR pH-meter (model pH 1000L) is located in building 314, in the Soft Mater (toxic) Lab and it is dedicated to “Soft Matter” related work.


The VWR pulsing vortex mixer provides ideal mixing of solutions or chemicals.


[[File:VWR pH meter.jpg|300px|thumb|left|VWR pH meter Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
 
Specifications according to the instruction manual:
* Can be used at 4 to 40 °C (maximum 85% relative humidity, non condensing), in an incubator, CO₂ incubator or cold room
* Pulsing model can reduce heat generation and ensures efficient mixing and disruption
* Have timer from 1 s to 160 h
 
 
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=VWR_pulsing_vortex_mixer_Instruction_Manual.pdf Instruction manual] ''- requires login'' <br />
 
[[File:IMG_9635.jpg|400px|thumb|left|VWR Pulsing Vortex Mixer Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= Magnetic stirrer =
== Magnetic hotplate stirrer ==
 
VWR Professional hotplate stirrer is ideal for stirring chemicals with controlled high temperature. An external resistance thermometer (RTD) probe option is available for temperature control of the sample.


The myPlate magnetic stirrer has similar technical features to the popular colour squid and big squid magnetic stirrers together with the option of creative individualisation.


Specifications:
Specifications:
- High chemical resistance
*Temperature range (°C) +5 to 400
- Electronically controlled motor
*Speed range (min-1) 60 to 1600
- Interchangeable frame for customisation
*Excellent temperature uniformity with consistent stirring at all speeds
- Proven high functionality
*Separate digital displays for temperature, speed and time; show set and actual values. Display will show last used settings, even after power has been turned off
- Digital speed indicator
*Cool touch, chemically resistant housing
- Can be used at 5 to 40 °C (80% relative humidity), in an incubator or cold room
*Includes external RTD temperature probe kit




[[File:VWR Hotplate W10.jpg|400px|thumb|left|VWR Hotplate W10 Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
[[File:Magnetic hotplate stirrer.jpeg|400px|thumb|left|VWR Magnetic hotplate stirrer Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= Pulsing Vortex Mixer =
== Hotplate ==
 
VWR Hotplate W10 is suitable for drying paraffin sections on microscope slides or for de-icing tools when doing cryo experiments.


VWR pulsing vortex mixer with features to suit different applications. The vortex mixer provide optimum comfort and minimal stress.


* Can be used at 4 to 40 °C (maximum 85% relative humidity, non condensing), in an incubator, CO₂ incubator or cold room
Specifications:
* Pulsing model has unique action which reduces heat generation and ensures efficient mixing and disruption
*Electronic touch display
* Digital and pulsing units have timer, 1 s to 160 h
*Sleek and compact 
*Ideal size for drying up to 40 microscope slides
*Temperature range between ambient and +89 °C
*Digital thermostat




Instruction manual: [[:File:VWR pulsing vortex mixer_Instruction Manual.pdf]]
[https://labmanager.dtu.dk/view_binary.php?class=MiscDocument&id=15&name=VWR_Hotplate_W10_Instruction_Manual.pdf Instruction manual] ''- requires login'' <br />




[[File:Vortex mixer.jpg|200px|thumb|left|VWR Pulsing Vortex Mixer Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
[[File:VWR Hotplate W10.jpg|400px|thumb|left|VWR Hotplate W10 Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= Hotplate =
== Analytical balance PX224 ==
 
The Ohaus Pioneer PX224 offers high accuracy and repeatability weight measurements.


VWR Hotplate W10 is suitable for drying paraffin sections on slides or for de-icing tools when doing cryo experiments.


Specifications:
*Weighing capacity is 220 g
*Readability is 0.1 mg
*Stabilisation time is 4 s
*A static removal bar (permanent static electric dissipative ABS) provides a convenient grounding location
*Applications include basic weighing, part counting, percent weighing, dynamic weighing and density determination


Instruction manual: [[:File:VWR Hotplate W10_Instruction Manual.pdf]]




[[File:VWR Hotplate W10.jpg|400px|thumb|left|VWR Hotplate W10 Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
[[File:Ohaus Analytical Balance PX224.jpg|400px|thumb|left|Ohaus PX224 analytical balance Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />


= Sonic Dismembrator =
== pH meter ==
The Fisherbrand Model 505 sonic dismembrator apparatus applies sound energy to agitate particles in a sample. In biological applications, sonication may be sufficient to disrupt or deactivate a biological material. For example, sonication is often used to disrupt cell membranes and release cellular contents. In nanotechnology sonication is commonly used for evenly dispersing nanoparticles in liquids.
The pH meter allows for accurate pH measurements of chemicals or ideal when making buffers.
 
 
[[File:VWR pH meter.jpg|400px|thumb|left|VWR pH meter Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
 
<br clear="all" />
 
== Midi 40 CO2 Incubator ==
The incubator is suitable for the incubation of cell culture and operates at temperatures ranging from 5°C above ambient temperature to 60°C ±0.2°C.


[[File:Sonic Dismembrator.jpg|400px|thumb|left|Fisherbrand Model 505 Sonic Dismembrator Location at DTU Nanolab Building 314 Room 040]]<br clear="all" />
[[File:Midi 40 CO2 Incubator.jpg|400px|thumb|left|Midi 40 CO2 Incubator Location at DTU Nanolab Building 307 Room 903]]<br clear="all" />
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on the equipment usage contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


Line 252: Line 318:


= EM sample preparation workflow =
= EM sample preparation workflow =
For '''TEM imaging''' of biological sample at room temperature or cryo conditions: <br clear="all" />
For '''TEM imaging''' of biological and softmaterial sample at room temperature or cryo conditions: <br clear="all" />
[[File:EM sample prep for TEM.jpg|800px]]
[[File:EM sample prep for TEM.jpg|800px]]


Line 258: Line 324:




For '''SEM imaging''' of biological sample at room temperature or cryo conditions: <br clear="all" />
For '''SEM imaging''' of biological and softmaterial sample at room temperature or cryo conditions: <br clear="all" />
[[File:EM sample prep for SEM.jpg|700px]]
[[File:EM sample prep for SEM.jpg|700px]]




For further information on EM sample preparation of biological samples contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].
For further information on EM sample preparation of biological and softmaterial samples contact mktracy@dtu.dk [https://www.dtu.dk/english/service/phonebook/person?id=141983&cpid=260636&tab=0].


<br clear="all" />
<br clear="all" />

Latest revision as of 13:02, 27 October 2023

Feedback to this page: click here

This section is written by DTU Nanolab internal if nothing else is stated.

Plunge Freezer

Leica EM GP2

Plunge freezing is a cryo-fixation method used to preserve samples in their native state prior to cryo-electron microscopy. The EM GP2 plunge freezes fluid or extremely thin samples spread on an electron microscopy grid into liquid ethane and afterwards excess fluid is removed by automatic blotting. Prior to freezing, the sample is maintained in a temperature and humidity controlled environmental chamber which is adjustable between +4°C and +60°C and room humidity to 99 %.


The main steps of this technique is as follows:
1. The sample is spread onto a glow discharged EM grid
2. The liquid droplet is then blotted with filter paper until only a very thin film of fluid remains
3. The grid is then rapidly plunged into a cryogen (usually liquid ethane)
4. The grid is afterwards stored in a grid box submerged in liquid nitrogen until finally loaded into the cryo-electron microscope for imaging


Operating manual - requires login

Leica EM GP2 Location at DTU Nanolab Building 314 Room 014 (Tecnai T20 room)


For further information on the equipment usage or training contact mktracy@dtu.dk [1].



Microtome

RMC MT-7 Microtome

Our RMC MT-7 Microtome is a vintage piece of equipment and can be used for specimen sample preparation for SEM/EDX analysis and/or for cutting relative thin slices (approx. 200nm thick) for TEM analysis. First, the specimen needs to be embedded into a resin or an epoxy, and then can be sectioned using a glass or diamond knife.


RMC MT-7 Microtome Location at DTU Nanolab Building 307 Room 906


For further information about the microtome usage contact mktracy@dtu.dk [2].



Leica EM UC7 Ultramicrotome

The Ultramicrotome Leica EM UC7 provides easy sample preparation of ultrathin sections for TEM, SEM, AFM and LM application. It is suitable for highly skilled or absolute beginners. The Leica ultramicrotome can provide ultra thin sectioning of sample embedded in a resin/epoxy block with a feed range of 1 nm up to 15 µm. Glass or diamond knife can be used for the ultra sectioning of the samples.


The main steps of this technique proceed as follows:
1. Mount sample
2. Mount glass or diamond knife to knife holder
3. Trimming or ultrasectioning of sample
4. Fishing sections
5. Transfer to an EM grid


Operating manual -requires login

Leica EM UC7 Location at DTU Nanolab Building 307 Room 906


Requirement for training: Completion of the DTU Epoxy course and purchased of own diamond knife. For further information about the equipment usage or training contact mktracy@dtu.dk [3].


Leica EM FC7 Cryo-Ultramicrotome

Within minutes the Leica EM UC7 ultramicrotome can be change to a cryo-ultramicrotome by mounting the cryo chamber EM FC7. Using the cryo-ultramicrotome, cryo-sections (-15° to -185°C) can be prepared for TEM, SEM, AFM and LM applications.


The main steps of this technique proceed as follows:
1. Set up the cryo chamber EM FC7 to the EM UC7 apparatus
2. Mount both the trim and sectioning diamond knives to the knive holder and set up in the cryo chamber
3. Connect the pump tube between the liquid nitrogen Dewar and the ultramicrotome apparatus
4. Fill up liquid nitrogen Dewar
5. Let equipment to cool down for 1 hour
6. Meanwhile prepare samples (Cut big samples to smaller pieces)
7. Freeze sample in liquid nitrogen and mount sample
8. Trimming and ultrasectioning of sample
9. Collecting sections and transfer to an EM grid


Operating manual - requires login

Leica EM FC7 Location at DTU Nanolab Building 307 Room 906


Requirement for training: Purchased of own diamond knife. For further information about the equipment usage or training contact mktracy@dtu.dk [4].


KnifeMaker

LKB Knifemaker 7801A

At DTU Nanolab we offer the possibility to make glass knives for ultramicrotomy applications using the LKB Knifemaker 7801A.


Manual of LKB Knifemaker 7801A - requires login

LKB Knifemaker Location at DTU Nanolab Building 307 Room 906


For further information about the knifemaker usage and training contact mktracy@dtu.dk [5].


Critical point dryer

Leica EM CPD300

The CPD allows for ideal preservation of specimen's microstructures during drying processes prior to SEM analysis. Since air drying could cause severe deformation and collapse of microstructure due to the effects of high surface tension to air, the water in the biological specimen is replaced with a suitable inert fluid (“transitional fluid”-CO2) which has a lower surface tension to air. This would thus reduce severe structural damages during drying processes.


Because liquid CO2 is not sufficiently miscible with water, a third medium commonly Acetone or Ethanol is used as “intermediate fluid”. The specimen is first dehydrated through various concentrations of the intermediate fluid and thus completely replacing the water in the specimen. Afterwards, the “intermediate fluid” is replaced with the “transitional fluid” (CO2) which can then convert from liquid to gas phase without surface tension effects which distort morphology and ultra-structure.


Operating manual - requires login

Leica EM CPD300 Location at DTU Nanolab Building 314 Room 040


For further information on the CPD usage or training contact mktracy@dtu.dk [6].


Drying oven

The TS9026 drying oven is of 26L capacity and is used for epoxy embedding experiments.


Specifications:

  • Temperature range is from 2°C to 250°C
  • Fan speed is 0 to 10
  • Capacity is 26L
TS9026 Drying oven Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [7].


Sonic Dismembrator

The Fisherbrand Model 505 sonic dismembrator apparatus applies sound energy to agitate particles in a sample. For biological applications, sonication may be sufficient to disrupt or deactivate a biological material. For example, sonication is often used to disrupt cell membranes and release cellular contents. In nanotechnology sonication is commonly used for evenly dispersing nanoparticles in liquids.

Fisherbrand Model 505 Sonic Dismembrator Location at DTU Nanolab Building 314 Room 040


For further information on the equipment usage contact mktracy@dtu.dk [8].


Preparation equipment

Mini tube rotator

The mini tube rotator can be used for rotating various sized laboratory tubes at several mixing angles at speeds ranging from 4 to 18 min–1.


Specifications:

  • Variable speed with LCD display
  • Digital microprocessor control
  • An adjustable 0 – 90° mixing angle
  • Interchangeable carousels for all common laboratory tubes
  • Cold room and incubator compatible
Mini tube rotator Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [9].


Mini Centrifuge

The Eppendorf Mini Spin plus centrifuge is a desktop centrifuge and has a user friendly digital display for time and speed.


Specifications:

  • Max. capacity 12 x 1.5/2.0 mL
  • Max. RCF 14 100 g
  • Speed 800 - 14 500 rpm (100 rpm steps)
  • Acceleration time 13 s
  • Timer 15 s to 99 mins


Instruction manual - requires login


Eppendorf Mini Spin centrifuge Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [10].


Magnetic stirrer

The myPlate magnetic stirrer is ideal for homogeneous mixing of chemicals.


Specifications:

  • High chemical resistance
  • Can be used at 5 to 40 °C (80% relative humidity), in an incubator or cold room
  • Speed range 100 to 2500 (min-1)
myPlate magnetic stirrer Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [11].


Pulsing Vortex Mixer

The VWR pulsing vortex mixer provides ideal mixing of solutions or chemicals.


Specifications according to the instruction manual:

  • Can be used at 4 to 40 °C (maximum 85% relative humidity, non condensing), in an incubator, CO₂ incubator or cold room
  • Pulsing model can reduce heat generation and ensures efficient mixing and disruption
  • Have timer from 1 s to 160 h


Instruction manual - requires login

VWR Pulsing Vortex Mixer Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [12].


Magnetic hotplate stirrer

VWR Professional hotplate stirrer is ideal for stirring chemicals with controlled high temperature. An external resistance thermometer (RTD) probe option is available for temperature control of the sample.


Specifications:

  • Temperature range (°C) +5 to 400
  • Speed range (min-1) 60 to 1600
  • Excellent temperature uniformity with consistent stirring at all speeds
  • Separate digital displays for temperature, speed and time; show set and actual values. Display will show last used settings, even after power has been turned off
  • Cool touch, chemically resistant housing
  • Includes external RTD temperature probe kit


VWR Magnetic hotplate stirrer Location at DTU Nanolab Building 314 Room 040


For further information on the equipment usage contact mktracy@dtu.dk [13].


Hotplate

VWR Hotplate W10 is suitable for drying paraffin sections on microscope slides or for de-icing tools when doing cryo experiments.


Specifications:

  • Electronic touch display
  • Sleek and compact
  • Ideal size for drying up to 40 microscope slides
  • Temperature range between ambient and +89 °C
  • Digital thermostat


Instruction manual - requires login


VWR Hotplate W10 Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [14].


Analytical balance PX224

The Ohaus Pioneer PX224 offers high accuracy and repeatability weight measurements.


Specifications:

  • Weighing capacity is 220 g
  • Readability is 0.1 mg
  • Stabilisation time is 4 s
  • A static removal bar (permanent static electric dissipative ABS) provides a convenient grounding location
  • Applications include basic weighing, part counting, percent weighing, dynamic weighing and density determination


Ohaus PX224 analytical balance Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [15].


pH meter

The pH meter allows for accurate pH measurements of chemicals or ideal when making buffers.


VWR pH meter Location at DTU Nanolab Building 314 Room 040


For further information on the equipment usage contact mktracy@dtu.dk [16].


Midi 40 CO2 Incubator

The incubator is suitable for the incubation of cell culture and operates at temperatures ranging from 5°C above ambient temperature to 60°C ±0.2°C.

Midi 40 CO2 Incubator Location at DTU Nanolab Building 307 Room 903


For further information on the equipment usage contact mktracy@dtu.dk [17].


EM sample preparation workflow

For TEM imaging of biological and softmaterial sample at room temperature or cryo conditions:



For SEM imaging of biological and softmaterial sample at room temperature or cryo conditions:


For further information on EM sample preparation of biological and softmaterial samples contact mktracy@dtu.dk [18].