DTU DANCHIP

DTU Cen

TECHFORUM June 2017

1346-347 DANCHIP

B

H B

Facts and figures

Agenda

- DUV stepper II
- Facility stuff
- Litho news
- E-beam downtime
- Thermal evap
- Diamond CVD
- Pegasus II, III, and IV
- RIE II end of life
- Renewal of PVD equipment (= decommission of existing equipment)
- Planned Equipment purchase in 2017
- RIE II end of life

It is getting crowded.....

Increase throughput ---- increase efficiency

Things keep changing over the last years (equipment, resists, safety) There are plenty of new technologies available (ALD, DUV, etc)

> Get a Danchip co-supervisor Get your processes flows checked and updated USE Tool Package Training where available

It is much more efficient **for all** to update the process flow and plan training according to an updated flow instead asking for single tool training.

Prepare to process during fringe hours.

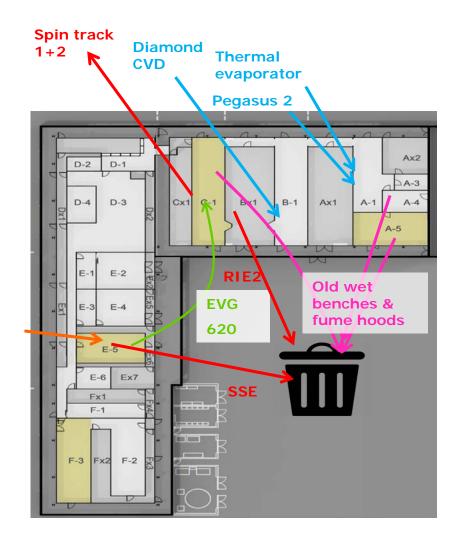
DUV stepper II

In the process of looking for funding

Increasingly difficult to get money for equipment

Anticipated cost: ~30 mio DKK Time line: secure funding during 2018, installed tool medio 2019 Anticipated specs: CD 150nm – 200nm, 150mm wafers, 200mm wafers

If you have a case or project where a new stepper would make a difference please tell us !



FACILITY STUFF

Equipment Departures and Arrivals

DTU
**

ΤοοΙ	Moves to	Date	
Old wet benches in C-1	Trash	July 2017	
III-V fume hoods	Trash	June 2017	
Spin track 1+2	Trash	August 2017	
SSE Spinner	Trash	May 2017	
Spinner rinser dryer	D-3	July 2017	
New spinner for 2/4/6" UV and e-beam resist	E-5	June 2017	
Thermal evaporator	A-1	May 2017	Süss
Diamond CVD	B-1	July 2017	Gamma 4M
Pegasus 2	A-1	August 2017	spinner
RIE 2	Trash	Dec 2017	
Pegasus 3+4	C-1	June 2018	

Summer schools and 3-weeks courses

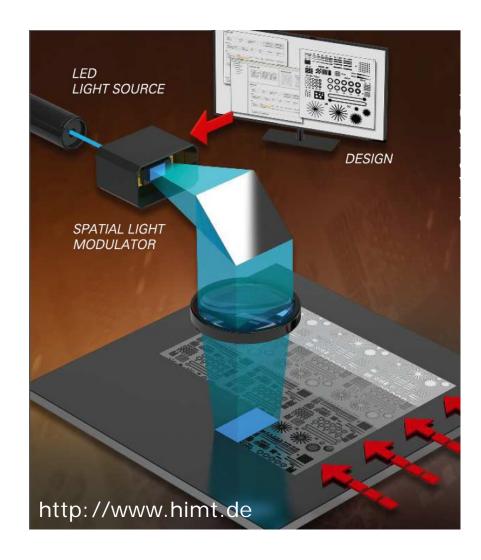
- Large influx of inexperienced users
- Cleanroom should still be usable for all
- Advise Danchip in advance
 - How many?
 - Who will supervise?
 - Do supervisors need retraining on equipment?
- Consider insurance status of non-DTU students
- Everybody must swipe their card
- Assist students when they gown up for the first time
- Do not leave students unattended in the cleanroom

HBr issue

- Metal ICP line valve clogged
- AGA trying to find time
- Potentially need line change
- If long waiting time we will open up
 III-V ICP line

LITHO NEWS

Spin Coater: Gamma E-beam and UV



- Partly new possibilities, partly back-up; 100% nice
- In-line HMDS priming
- 4 hotplates, 1 cool plate
- 4/6" coater station
 - AZ5214E
 - MIR 701
 - AZ 4562
 - CSAR 62
 - EBR
- 2" coater station
 - AZ5214E
 - CSAR 62
 - Syringe dispense
 - One available low visc. line
 - EBR
- SAT in July 2017
- Expected release in Q4 2017

Idea Users Funds Tender Contract FAT SAT Manual Released

Aligner: Maskless 01: Principle

- The light source illuminates a Digital µ-Mirror Device
- The image from the DMD is projected onto the sample
- The dose and uniformity is controlled by the on-time of the individual mirrors/pixels
- The stage steps, stitching the design together
- DMD: 600 X 800 pixels
- "Writing field": 300 X 400 μm^2
- Projected pixel size: 0.5µm X 0.5µm
- Process parameters: dose and focus
- Projection lithography \rightarrow proximity errors!
- Writing time is affected by dose and area, not by feature size. Pattern load has non-linear effect.
- Full 4" wafer: 2-3 hours!

Idea Visers Funds Tender Contract FAT SAT Manual Released

Aligner: Maskless 01: Design philosophy

Choose maskless aligner:

- If your device design is new
- If you know you will only print a few wafers with the same layout/design
- Write only a few devices and test one/few designs at a time
- "Draw and shoot", no feature creep
- Order a mask when the design is perfected

Choose mask aligner:

- If your device design is mature
- If you know you will be printing 10's of wafers with the same layout/design
- Fill the mask with as many devices as possible, testing as many designs as possible
- Spend days/weeks perfecting and reviewing
- Order a new mask when the design changes

Or combine mask and maskless:

- Print all the static parts of the design using the mask aligner, then fill in the (few) parts of the design that change with design iterations using the maskless aligner
- With a positive resist like AZ5214E, this can even be done using the same resist coating:
 - Expose in the mask aligner and develop the pattern
 - Align in maskless aligner and write the missing parts, then develop again

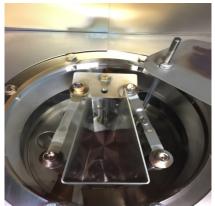
E-beam down time

- Column upgrade Scheduled: 2 weeks. Actual 4 weeks (software/hardware issues)
- After column upgrade: Cleanroom closed 1 week
- Failure of new gun (presumably JEOL induced): 3 weeks
- Loadlock turbo crash (JEOL induced): 3 weeks
- Aperture instability (JEOL induced): 3 weeks
- Total down time: ca. 13 weeks (!)
- E-beam seems OK now (famous last words)
- We are complaining to JEOL on several levels

NEW EQUIPMENT

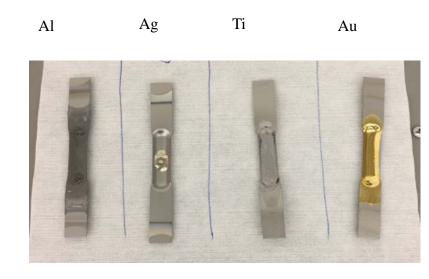
Idea Users Funds Tender Contract FAT SAT Manual Released

Thermal Evaporation: Lesker NANO 36


- resistive heated boats

- Turbomolecular pumping
- An integrated touch-screen operation system
- Substrate holder : up to 8" wafer
- 2 evaporation sources
- Quartz crystal sensor

Lesker NANO 36 – initial tests


Pump-down time

- 10 min = > 1x10⁻⁵ Torr (Process can be started)
- 20 min => 3x10⁻⁶ Torr

Film uniformity on 4 inch wafer

- < 5% for 100 nm Al
- < 10% for 100 nm Ag

Tested materials

Idea Users Funds Tender Contract FAT SAT Manual Released

Diamond thin film: Seki SDS 5250S

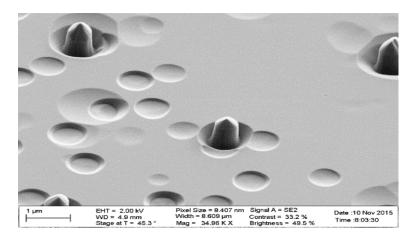
Key features

- Microwave Plasma CVD (2nd hand system)
- Generator: 5 kW @ 2.45 GHz
- Substrate: 4" max (2" standard)
- Gases: N_2 , H_2 , CH_4 , O_2
- Installation: Q2-Q3 2017

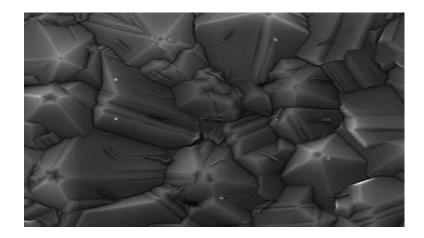
Growth process

- H2:CH4:O2 (478:20:2 sccm) @ 600-1000 C
- Power 1.5 5 kW (typical)

Thin-film diamond CVD


Diamond substrates and layers - variety of applications

Quantum optics MEMS High power electronics


. . .

Different types of diamond films:

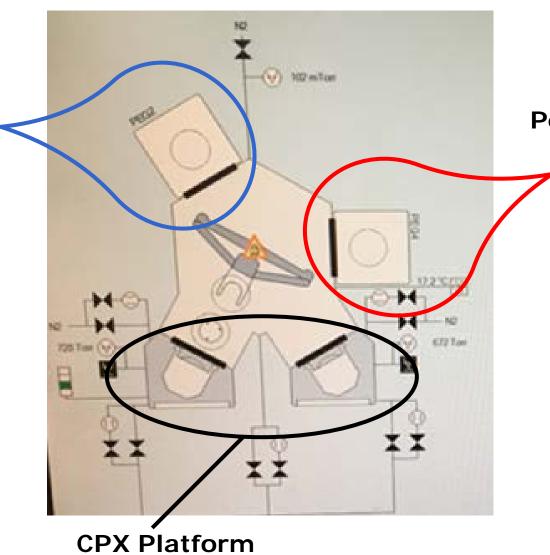
Thin film single-crystal diamond layers on diamond seed x-tal Polycrystalline diamond on silicon/other substrates Selective area growth of diamond

Single-crystal diamond (etched mesas)

Poly-Diamond growth on Si

Pegasus 2: DRIE of silicon (Research & development)

- Background:
 - Bottleneck situation on Pegasus 1
 - Backup system & research
- 2nd hand system being installed
- Expected release around August 2017


New acqusition: Twin-Pegasus (version 2010)

Twin-Pegasus: The Plan

Pegasus 3 DRIE (Si) – 6" High-throughput Cassette-Cassette "Workhorse"

(Brooks handler)

twin vacuum cassette cluster

Pegasus 4 DRIE (Dielectrics) – 6" Reconfigure (Dielectrics) High-throughput Cassette-Cassette "Workhorse"

DTU

Logistics: Moving in Twin-Pegasus – Moving out Cluster 2 (RIE-2)U

Decommisioning of RIE-2 (latest end of 2017)

Reconfigure ASE (CH₄, CHF₃, H₂, He + MFCs) Establish Pegasus 2 **Transfer RIE-2 processes to ASE (RIE-mode) Transfer ASE processes to Pegasus**

Tender preparation: X-Ray Diffractometer

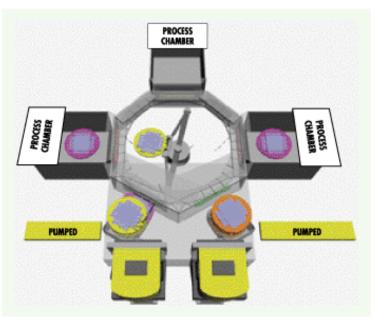
- Background:
 - Complementary in-line material analysis (crystalline/ poly/nano-crystalline)
 - Co-funding (Danchip/Fotonik)
- Material properties:
 - crystal orientation
 - grain size
 - electron density
 - film thickness

What could the future of PVD at Danchip/Cen look like?

• a work horse (Wordentech replacement) ?

FC2000 Load Lock

- a circus pony (Physimeca, Alcatel replacement) ?
- new functionality (dielectric films, alternating metal dielectric films) ?
- ?????


PRODUCT CHAMBER Product Chamber is ~20% of total system volume) LOAD LOCK GATE VALVE

(Stainless Steel gate valve slides horizontally in and out of the housing and isolates the Product Chamber from the Source Chamber) (Source Chamber is ~80% of total system volume) (Depending on the evaporant replenishment cycle, the source chamber could be opened only for 10% of all product loading cycles

which results in,

- a. Faster Pump Down
- b. Longer filament life as its not oxidized every vent cycle)
- c. Coating on shields adheres for longer time thus reducing maintenance cycles
- d. Do not need to wait for entire chamber to cool down before y

Formo loo

Tools leaving the cleanroom

- SSE Maximus. Moved out
- SVG spin track. Replaced by Gamma 4M
- Old wet benches in Ballroom (replaced by new benches and fume hoods)
- Old fume hoods in III-V lab
- Wet benches in C-1 (old yellow room)
 - Replaced by new wet benches in Ballroom
 - Will stay until new benches are ready
- PECVD 2 (replaced by PECVD 4)
- RIE 2 (will leave by end of 2017)

14.11.2018