Lithography Tool Package

1. Introduction to Lithography

 from Ancient Greek <u>λίθος</u>, *lithos*, meaning "stone", and <u>γράφειν</u>, *graphein*, meaning "to write".

Tine Greibe and Thomas Anhøj

DTU Danchip National Center for Micro- and Nanofabrication

Before we start

- Who am I?
- Who are you?
- Who are we?

Elena Khomtchenko

Process Specialist, M.Sc.

Process Specialist, Ph.D.

DUV

Lean Pedersen Process Specialist, M.Sc.

E-beam

Thomas Anhøj Process Specialist, Ph.D.

UV

Outline

1. Introduction

 Process steps in UV lithography

2. Spin coating

- Resist composition
- Pre-treatment
- Principle
- Softbake
- Spin curve

3. Exposure

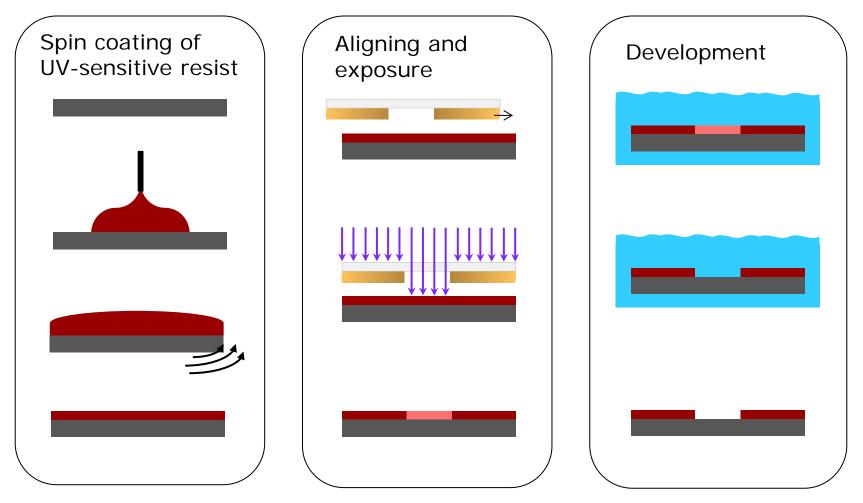
- Hardware
- Process parameters
- Resolution
- Alignment

4. Development

- Principle
- Effects
- Resist tone, photochemistry, and contrast
- 5. Post-processing and characterization
 - Post processing
 - Characterization methods

6. Process effects and examples

- Process effects
- Real life process examples

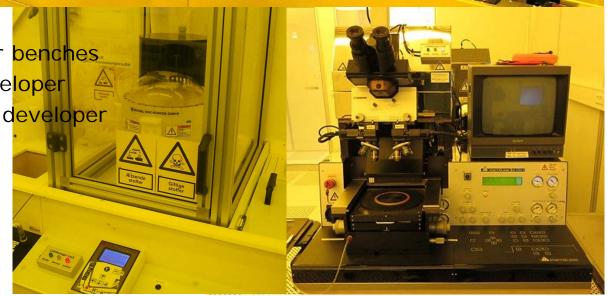


Lithography: methods

Technology	Exposure Source	Wavelength	Minimum Resolution [nm]
UV Contact Lithography	Hg vapor lamp	365 nm	1500
UV Projection Lithography	Hg vapor lamp	365 nm	800 – 350
Deep-UV Projection Lithography	KrF excimer laser	248 nm	250 – 90
Deep-UV Immersion Lithography	ArF excimer laser	193 nm	110 – 38
Extreme-UV Projection Lithography	IR Laser-produced Sn plasma EUV	13.5 nm	< 20
Electron Beam Lithography	Field-emission electron gun (100 keV)	3.9 pm	< 10

Available at DTU Danchip

UV lithography: process



UV lithography: equipment

• Coating:

- 2 automatic spin coaters
- 4 manual spin coaters
- 1 spray coater
- Exposure:
 - 3 mask aligners
 - 1 UV flood exposure source
- Development:
 - 2 submersion developer benches
 - 1 automatic puddle developer
 - 1 manual spray/puddle developer
- Auxiliary:
 - HMDS priming ovens
 - Hotplates
 - Lift-off benches
 - Resist strip bench

Lithography: comparison

	UV Lithography	DUV Stepper Lithography	E-beam Lithography
Minimum Resolution	~1.5 µm	~220 nm	~10 nm
Process time (4" wafer)	 ~2 min load and unload 	 ~10 min load and unload 	 ~1 h of machine calibration + substrate load and unload
	 ~10 s per exposure 	 ~1 s per field exposure 	 A pattern area of 1 cm² takes ~8 h to expose with a beam current of 10 nA and a dose of 300 µC/cm2
Throughput (4" wafer)	~25 wafer/hour	≳6 wafer/hour (much higher for 6″)	0.1 - 3 wafer/hour
Training	Lithography TPT + separate trainings	Processed by DTU Danchip	Only available for Ph.D. students and up