Lithography Tool Package

4. Development

Thomas Anhøj and Tine Greibe

DTU Danchip National Center for Micro- and Nanofabrication

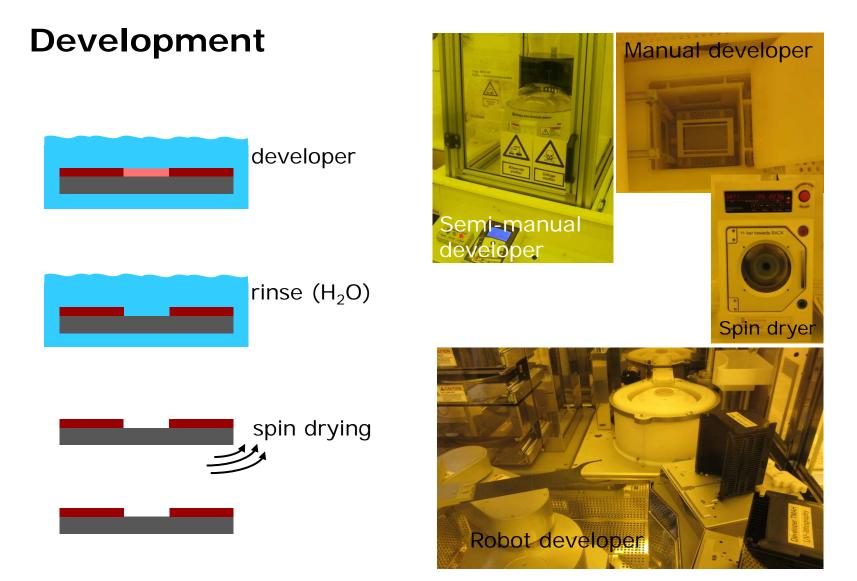
Outline

1. Introduction

 Process steps in UV lithography

2. Spin coating

- Resist composition
- Pre-treatment
- Principle
- Softbake
- Spin curve

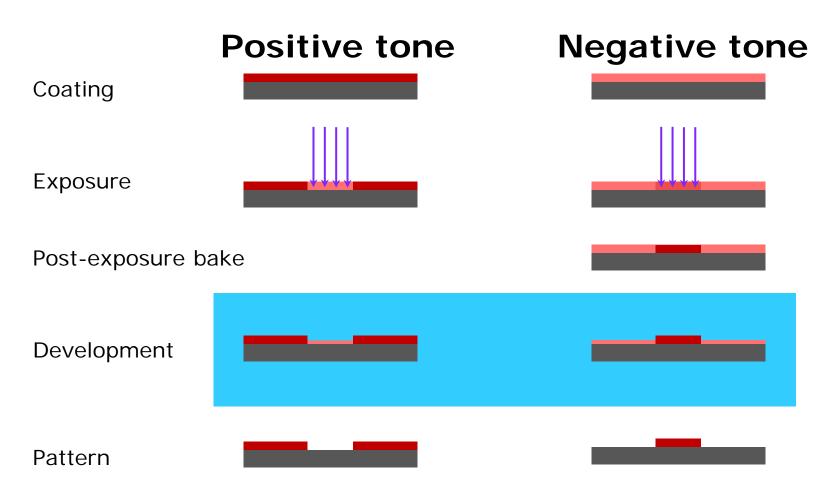

3. Exposure

- Hardware
- Process parameters
- Resolution
- Alignment

4. Development

- Principle
- Effects
- Resist tone, photochemistry, and contrast
- 5. Post-processing and characterization

- Post processing
- Characterization methods
- 6. Process effects and examples
 - Process effects
 - Real life process examples


Development: principle

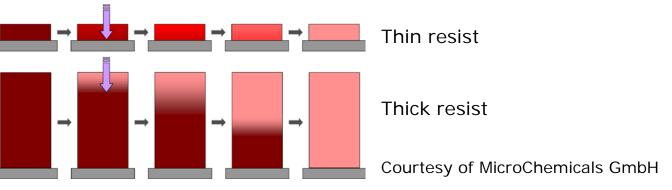
- Resin: Monomers or polymer chains of varying length (solid at RT)
- **Photo-active component** (PAC): Reacts with UV-light during exposure and changes the resin
- Solvent (~70%): Dissolves the resin in order to enable coating
- In the exposure, light activates the photo-active compound which changes the solubility of the resist in the developer in the exposed areas
- In some resists, the photo-chemistry is a catalytic process, which is activated/assisted thermally in a so-called **P**ost-**E**xposure **B**ake (PEB)

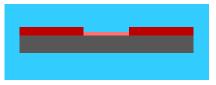
Methods

- Submersion: the substrate is submerged in a bath of developer
- Puddle: developer is dispensed onto the surface of the substrate, and held there by surface tension
- Spray: developer is sprayed onto the substrate

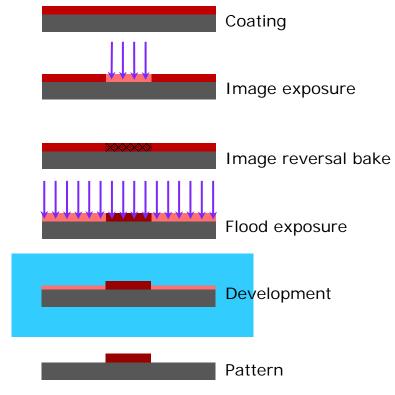
Development: resist tone

Photoresist: tone


Positive tone


- Exposed resist becomes soluble in developer
- Polarity change or chain scission
- Bleaching during exposure enables straight sidewalls even for thick resist

- Exposed resist becomes insoluble in developer
- Polarity change or cross-linking (usually requires PEB)
- Special case: no bleaching (AZ nLOF 2020) \rightarrow always negative sidewalls



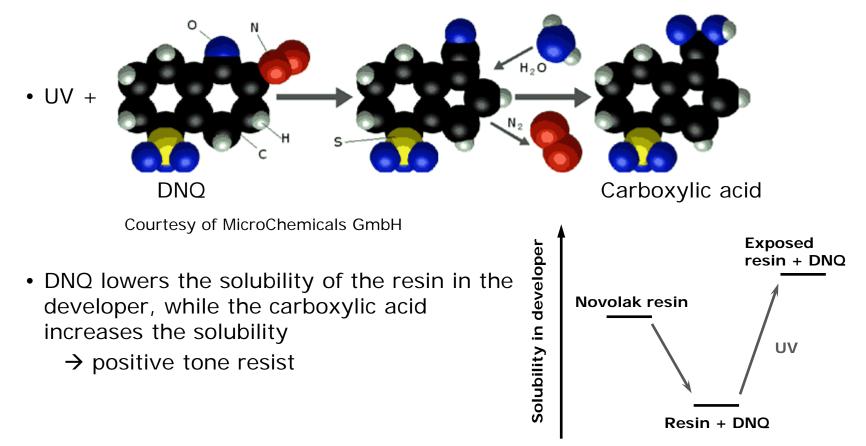
Photoresist: special categories

- Image reversal resist (AZ 5214E)
 - Positive resist changed to negative by additional process steps
 - Cross-linker (NH₃) is added, activated by the *image reversal bake*
 - The temperature of the image reversal bake is a critical parameter
 - Requires flood exposure before development

- Chemically amplified resists
 - Photo-initiation is catalytic
 - Requires PEB
 - Dose = light + heat
 - \rightarrow higher throughput

Developers at DTU Danchip

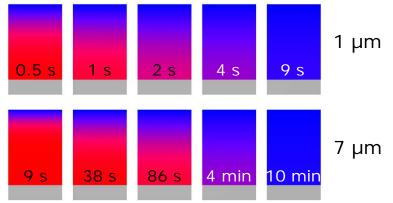
- AZ 351B
 - NaOH in water (base)
 - buffer additive (for submersion)
- AZ 726 MIF
 - TetraMethylAmmonium Hydroxide (TMAH) in water (base)
 - wetting agent (for puddle)
- mr-Dev 600
 - PGMEA for SU-8 development (solvent)



!>

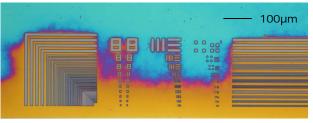
UV Resist	MiR 701	nLOF 2020	5214E	4562	SU-8
Thickness	1.5–4 µm	1.5–4 µm	1.5–4 µm	5–10 µm	4–200 µm
AZ 351B	(x)	(?)	Х	Х	
AZ 726 MIF	Х	х	Х	Х	
mr-Dev 600					Х
Positive	Х		Х	Х	
Negative		х	Х		Х

Photoresist: photo-chemistry

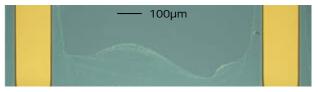

• AZ 5214E, AZ 4562, and AZ MiR 701 have **d**iazo**n**aphtho-**q**uinonesulphonate (DNQ) as the photo-active component, or photo-initiator

Photoresist: photo-chemistry, consequences

- After softbake, the resist has to rehydrate in order to enable exposure
 - 1µm rehydrates in 10s
 - 10µm requires at least 10 minutes
 - Thicker films may require hours to rehydrate
 - Insufficient rehydration leads to under-development and/or non-straight sidewalls



Courtesy of MicroChemicals GmbH

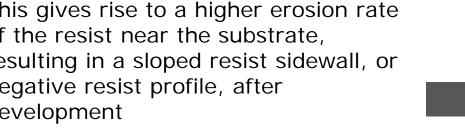

- After exposure, the N₂ has to outgas before any thermal process in order to prevent bubbles from forming
 - Before image reversal bake (5214E), and possibly PEB (MiR 701)
 - 1µm outgasses in ~1 minute, 3µm in ~10 minutes, while a 10µm film may require hours to outgas
 - Thick resist should be exposed in intervals with delays in between
- AZ nLOF 2020 and SU-8 both have a different PAC, and do not require rehydration or outgassing

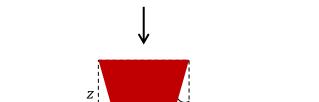
Development: effects

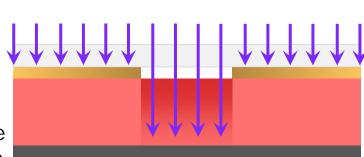
- Under-development: resist remaining between pattern
 - Increase development time
 - Increase exposure dose (positive tone)
- Dark erosion: pattern attacked by the developer
 - The resist becomes thinner
 - Resist lines become narrower; gaps become wider
 - Minimize development time
 - Optimize softbake parameters (positive) / increase dose (negative)
- Scumming: resist residues left behind on the substrate
 - Substrate and developer dependent
- Forgetting PEB leads to
 - under-development of positive tone resist
 - full development (no pattern) for negative tone resist

Under-developed resist

Scumming on SiO₂. Courtesy of Sonny Massahi

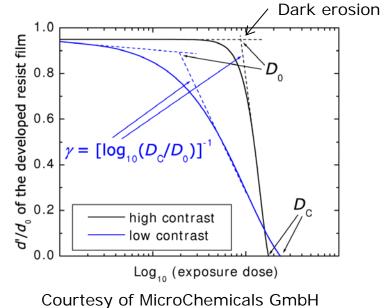



Sidewall angle in negative resist


- In a cross-linking, negative tone resist, erosion of the exposed resist in the developer depends on the density of cross-links in the resist
- Due to absorption during exposure, the cross-link density is often lower at the substrate, compared to at the top of the resist film (especially for AZ nLOF which doesn't bleach)
- This gives rise to a higher erosion rate of the resist near the substrate. resulting in a sloped resist sidewall, or negative resist profile, after development
- Sidewall angle usually limits the resolution in contact printing of negative tone resist

DTU Danchip, Technical University of Denmark

53

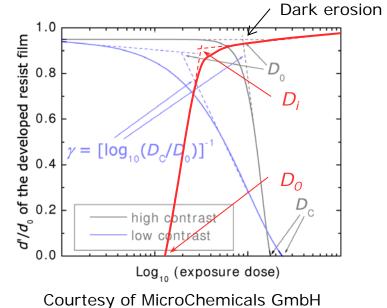

$$R = 2z \tan \alpha \ (+c)$$

Photoresist: contrast

- Ideally, at least for high resolution, the response of a resist to exposure should be a step function, i.e. no development below a threshold dose; full development above the threshold dose
- In reality, development starts at a dose, D_0 , but finishes at a higher dose, D_C (dose to clear), leading to the definition of **contrast**, γ , as the slope of the transition:

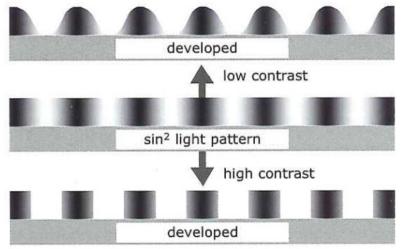
$$\gamma = \frac{1}{log(\frac{D_c}{D_0})}$$
, for a positive tone resist

• What does the contrast curve look like for a negative tone resist?


Photoresist: contrast

- Ideally, at least for high resolution, the response of a resist to exposure should be a step function, i.e. no development below a threshold dose; full development above the threshold dose
- In reality, development starts at a dose, D_0 , but finishes at a higher dose, D_c (dose to clear), leading to the definition of **contrast**, γ , as the slope of the transition:

$$\gamma = \frac{1}{log(\frac{D_c}{D_0})}$$
, for a positive tone resist


- For a negative resist, the curve is reversed
- Complete development stops at a dose, D₀, and development stops a higher dose, D_i ("fully insoluble dose"), leading to:

$$\gamma = \frac{1}{log\left(\frac{D_0}{D_i}\right)}$$
, for a negative tone resist

Photoresist: contrast, low vs. high

- Contrast determines how the image from the exposure transfers to the resist pattern
- In most cases, e.g. for dry etch, a high contrast is desired

Courtesy of MicroChemicals GmbH

- Contrast depends on many factors:
 - Developer chemistry, concentration, and temperature
 - Resist type and thickness
 - Softbake parameters (due to dark erosion)
 - etc.