
Danchip Cross Contamination System

Attribute-based cross contamination control

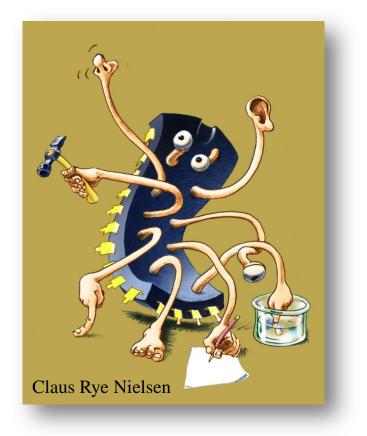
This slide show was used in connection with a presentation given at DTU Danchip in august 2014.

During the talk other presentation tools where used (drawings, online access) so it may not give a coherent view on the topic.

Outline

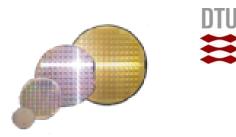
- How to access the Cross Contamination Sheet in LabManager
- Why care about cross contamination?
- The principle behind the Cross Contamination system.
 An example
 - Details of the Cross Contamination sheet
- How to use the system in LabManager
- How does it affect my work in the clean room?
- Answer questions.

How to access the Cross Contamination Sheet in LabManager

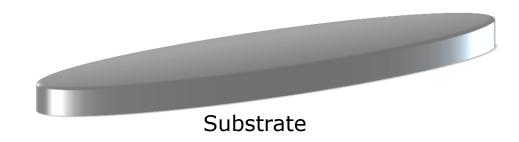

- Go to the "Equipment Info" page
- Select the tool
- Click on the button "Cross Contamination Sheet"

	LabManager for DTU Danchip & D equipment Info List Change Status Booking Booking (New) Tir
Equipment Info	
Equipment	
	CEN (AII) DCH (AII) Last Used Last Used (Pro
	Properties for 0-TestTool
	Go to
	Status Log Service Log Process Log Usage Log Error Log Change Status
2	Cross Contamination Sheet
	Edit Accessories Edit Log parameters
	Documents

Complexity

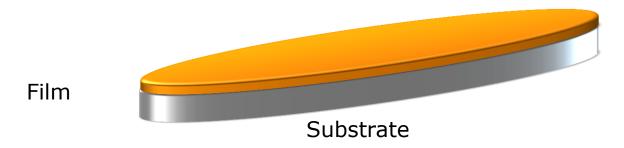

- We can do a lot of different things in the clean room
- We need to simplify
- So we have grouped things ...

4 Groups in the system


Substrate						Fi	lm			Trace					Misc.			
Substra	te					Filr	n				Trace				М	isc.		
Substrate	In	+0)ut •	-	Fi	ilm	In	+0	ut —		Trace	In	+0	ut —	Misc	In	+ Oı	ıt –
Clean	V	-	-	-	Photores	ist/polymer	V	<u>A</u> 2	A 3	Photores	ist/polymer traces	<	÷	-	Alkali traces	V	-	-
III-V	×	-	-	-	Aluminun	n	V	-	-	Aluminun	n traces	V	÷	-	n++ predoped Si	V	-	-
Glass Tg > 600C	×	-	-	-	Chromiu	m	×	-	-	Chromiur	m traces	V	-	-	p++ predoped Si	V	-	-
Polymer High Tg > 180C	A 1	-	-	-	Titanium		×	-	-	Titanium	traces	V	-	-	BPSG	V	-	-
Polymer Low Tg < 180C	×	-	-	-	Titanium	Silicide	×	-	-	Titanium	Silicide traces	V	-	-	Bulk contamination	V	<u>A</u> 4	-
Other substrates	×	-	-	-	Type I		×	-	-	Type I trac	ces	V	-	-	Graphene	×	-	-
					Type II		×	-	-	Type II tra	ces	V	-	-	Nanotubes	×	-	-
					Type III		×	-	-	Type III tra	ices	V	-	-	Dust	×	-	-
					Type IV		×	-	-	Type IV tra	aces	×	-	-	KOH etch residuals	V	-	-

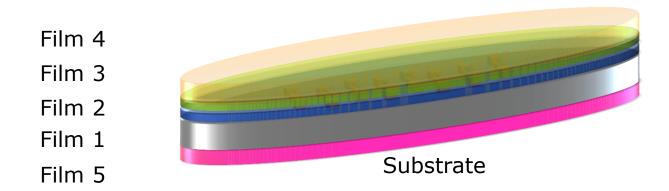
The substrate (Group 1/4)

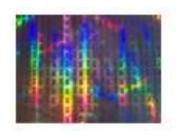
The substrate type is characterized by the material characteristics of the given sample.



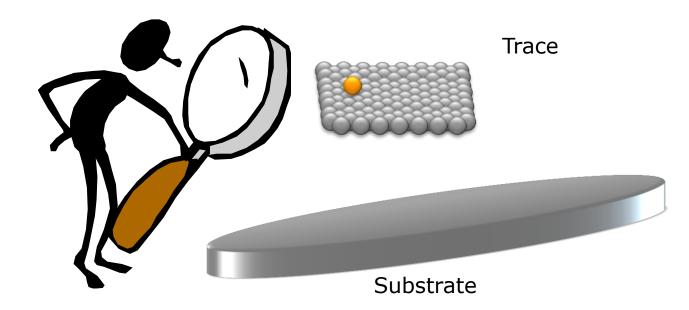
Film (Group 2/4)

A film type is characterized by the material characteristics of any films on the given sample.

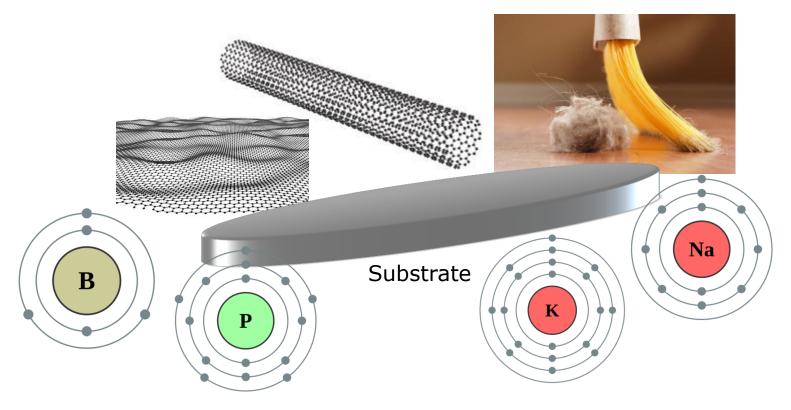

A film need not be complete, a part does however need to be more than one atom thick and several nm wide in the plane – if it can be seen in a SEM it is probably a film – if it can be seen in a microscope it is definately a film



DTU


There can be more than one film

Trace (Group 3/4)


A trace type is characterized by the material characteristics of any material found in low concentrations on the given sample.

Misc (Group 4/4)

Misc is a dimension used for contaminants which didn't fit in the other categories

Many different attributes

	Substrate	In	+0	ut —	Film	In	+0	ut —		Trace	In	+0	ut <u> </u>	Misc	In	+ Ou	ıt —	
π	Clean	V	-	- L	Photoresist/polymer	~	<u>A</u> 2	▲∽	\rangle	Photoresist/polymer traces	×	+	$\langle \rangle$	Alkali traces	V	-	-	
ľ	III-V	×	-	-	Aluminum	V	-	-		Aluminum traces	<	÷	-	n++ predoped Si	V	-	-	
	Glass Tg > 600C	×	-	-	Chromium	×	-	-		Chromium traces	<	-	-	p++ predoped Si	V	-	-	
	Polymer High Tg > 180C	<u>A</u> 1	-	-	Titanium	×	-	-		Titanium traces	V	-	-	BPSG	V	-	-	
	Polymer Low Tg < 180C	×	-	-	TitaniumSilicide	×	-	-		TitaniumSilicide traces	V	-	-	Bulk contamination	V	<u>A</u> 4	-	
	Other substrates	×	-	-	Туре І	×	-	-		Type I traces	V	-	-	Graphene	×	-	-	
I					Туре II	×	-	-		Type II traces	V	-	-	Nanotubes	×	-	-	
					Type III	×	-	-		Type III traces	V	-	-	Dust	×	-	-	
I					Type IV	×	-	-		Type IV traces	×	-	-	KOH etch residuals	V	-	-	
l	Explanations:				Vallow 🔰	KPRO	OHIBIT		1	+ADD -REMO	OVE			APROCESS/SAMF	PLE D	EPEND	ENT	

Note Text									
1	use carrier								
2	special recipes - ask for advice								

- 3 Long O2 plasma cleaning required
- 4 Metal exposed to plasma will give bulk contamination

Attribute	Details
Clean	Fused silica, Sapphire, SiC, Silicon, {supplied by Danchip}
Glass Tg > 600C	Borofloat, LithiumNiobate, Microscope slides
III-V	GaAs, GaN, InP, with epitaxial layers
Other substrates	Copper, Steel
Photoresist/polymer	if in doubt, ask Danchip Customer Support
Туре І	Mo, Nb, Ta, W
Type II	As, C, Ga, In, Mg, P, Sb, Zn
Type III	Ag, Au, Cu, Fe, Ge, Ir, Mn, Ni, Pd, Pt, Sn, V
Type IV	Pb, Te

How it looks for the ASE

				Labmanager	name								e-mail to	البير وال	Roor B-1	n
				ASE									dryetch@danchip.o Responsible group	itu.uk		nanager l
27-Aug-2014 15:39													Dry Etch		3.00	-
Substrat	te				Filn	n			Trace				-	isc.		
Substrate	In	+0	ut —	Film	1	In	+0	ut –	Trace	In	+0	ut —	Misc	In	+ Oı	ıt –
Clean	V	-	-	Photoresist/	polymer	1	<u>A</u> 2	A 3	Photoresist/polymer traces	V	+	-	Alkali traces	V	-	-
III-V	×	-	-	Aluminum		V	-	-	Aluminum traces	V	+	-	n++ predoped Si	V	-	-
Glass Tg > 600C	×	-	-	Chromium		×	-	-	Chromium traces	V	-	-	p++ predoped Si	V	-	-
Polymer High Tg > 180C	A 1	-	-	Titanium		×	-	-	Titanium traces	V	-	-	BPSG	V	-	-
Polymer Low Tg < 180C	×	-	-	TitaniumSili	cide	×	-	-	TitaniumSilicide traces	V	-	-	Bulk contamination	V	<u>A</u> 4	-
Other substrates	×	-	-	Туре І		×	-	-	Type I traces	V	-	-	Graphene	×	-	-
				Type II		×	-	-	Type II traces	V	-	-	Nanotubes	×	-	-
				Type III		×	-	-	Type III traces	V	-	-	Dust	×	-	-
				Type IV		×	-	-	Type IV traces	×	-	-	KOH etch residuals	V	-	-
Explanations:				ALLOW	>	<pre>K</pre>	OHIBIT		+ADD -REMO	OVE				PLE D	EPEND	DENT

Note Text										
1	use carrier									
2	special recipes - ask for advice									
3	Long O2 plasma cleaning required									
4	Metal exposed to plasma will give bulk contamination									

Attribute	Details
Clean	Fused silica, Sapphire, SiC, Silicon, {supplied by Danchip}
Glass Tg > 600C	Borofloat, LithiumNiobate, Microscope slides
III-V	GaAs, GaN, InP, with epitaxial layers
Other substrates	Copper, Steel
Photoresist/polymer	if in doubt, ask Danchip Customer Support
Туре І	Mo, Nb, Ta, W
Type II	As, C, Ga, In, Mg, P, Sb, Zn
Type III	Ag, Au, Cu, Fe, Ge, Ir, Mn, Ni, Pd, Pt, Sn, V
Type IV	Pb, Te

You gotta ask yourself...

- Is a sample with this particular attribute allowed in the tool? (Allow/Prohibit)
- Does the tool contaminate the sample with this particular attribute, when a sample is processed using the tool in its intended way? (Add)
- Does the tool remove all of this particular contamination from the sample, when a sample is processed using the tool in its intended way? (Remove) —
- Always consider the tool to be working and used correctly by a skilled user where a meaningful process has run to completion.
- These are not legal documents it is an attempt to preserve our tools in known states.

Add/remove are not really symmetric

+ Add (add any): if the sample becomes contaminated with some of this attribute contamination, the tool adds this attribute

Remove (remove all): if the sample is cleaned of all contamination of this attribute, then the tool "removes" this attribute

If the attribute is added to some part of the wafer the whole wafer has the attribute

Only when every part of the attribute contamination is no longer on the sample after the process, it is considered removed

And now a little more complication

In some cases things are unfortunately not so simple and the decision is dependent on the particular process done in the machine.

You can for example deposit many kind of metal films in the Alcatel. So whether you add an aluminum or gold film to your sample depends on the particular process you run.

Process/sample dependent: can be set for both in-going and out-going properties i.e. allow/prohibit, add and remove cases