Lithography Tool Package

3. Exposure

Thomas Anhøj and Tine Greibe

DTU Danchip National Center for Micro- and Nanofabrication

Outline

1. Introduction

 Process steps in UV lithography

2. Spin coating

- Resist composition
- Pre-treatment
- Principle
- Softbake
- Spin curve

3. Exposure

- Hardware
- Process parameters
- Resolution
- Alignment

4. Development

- Principle
- Effects
- Resist tone, photochemistry, and contrast
- 5. Post-processing and characterization

Post processing

- Characterization
 - methods
- 6. Process effects and examples
 - Process effects
 - Real life process examples

Mask aligning and UV exposure

Photoresist: composition

- Resin: Monomers or polymer chains of varying length (solid at RT)
- **Photo-active component** (PAC): Reacts with UV-light during exposure and changes the resin
- Solvent (~70%): Dissolves the resin in order to enable coating
- After spin coating and softbake, most of the solvent has evaporated, leaving only resin and PAC in the film on the substrate
- Optical properties
 - Absorbs UV-light (spectral sensitivity)
 - Absorption decreases during exposure
 - = bleaching

Exposure: procedure and hardware

Exposure source

- Mercury arc lamp: emits spectral lines on top of thermal light
- High power input, most is lost (heat, unwanted wavelengths)
- Most used spectral lines: 365nm (i-line), 405nm (h), 436nm (g)

Exposure optics

- Cold mirror: dumps white light
- Shutter: blocks the light
- Fly's eye lens (lens array) and condenser lens: makes the light spatially uniform
- Filter: selects the desired line(s)
- Front lens: collimates the light (parallel beams)

Exposure: procedure and hardware

Mask

32

- A glass plate with chrome pattern
- Commercially produced, usually laser or e-beam lithography
- Anti-reflection coating makes chrome side brown

Exposure procedure

- Load substrate into machine
- Machine performs Wedge Error Compensation (WEC): substrate surface is made parallel to mask
- Align substrate to mask: the substrate is moved in order to align marks on the substrate to marks on the mask
- Expose substrate: the shutter is opened for a predefined time

DTU

Exposure: process parameters

Exposure mode

- Proximity: mask and substrate are separated by a gap of e.g. 10µm during exposure
 - Pros: the mask does not get dirty \rightarrow hundreds of prints
 - Cons: reduced resolution (line broadening, corner effects)
- **Contact:** mask and substrate are in close contact during exposure
 - Pros: highest resolution
 - Cons: the mask gets dirty \rightarrow a few prints
 - Subtypes: soft, hard, vacuum

Exposure: contact printing subtypes

- Soft contact: many decent prints
 - Same force as WEC
- Hard contact: ~10 good, uniform prints
 - The vacuum holding the substrate on the chuck is replaced by a N₂ pressure, forcing substrate and mask in closer contact
 - 'Hard Contact (HC) wait time' is typically set to 10 sec (time between contact and exposure)
- Vacuum contact: 1 very good print, thereafter only perfect in areas
 - A chamber is created between chuck and mask (by inflating a rubber ring around the substrate), and the space between substrate and mask is evacuated

Exposure: process parameters

Exposure dose

- Dose = intensity \cdot time
- Unit is $mW/cm^2 \cdot s = mJ/cm^2$
- Optimal dose is a function of:
 - Resist; sensitivity, thickness, softbake parameters
 - Exposure light; wavelength, intensity
 - Developer; chemistry, temperature, time
 - Mask material (absorption)

UV Resist	MiR 701	nLOF 2020	5214E	4562	SU-8
Thickness	1.5–4 µm	1.5–4 µm	1.5–4 µm	5–10 µm	4–200 µm

Exposure: resolution

Theoretical resolution limit

$$R = k \sqrt{\lambda \left(s + \frac{z}{2}\right)}$$

s: gap between mask and resist

z: resist thickness

- λ : wavelength of exposure light
- k: a constant, theoretically 1.5

Adapted from Marc J. Madou "*Manufacturing Techniques for Microfabrication and Nanotechnology*" 2011. Valid for a (one dimensional) grating with period 2R.

• Contact (s=0): $R = 0.8\mu m$. Mask upside down (s=2.3mm): $R = 43\mu m!$

Practical resolution

 In practice, resolution is decreased by resist contrast, stability (aspect ratio), and adhesion to substrate, as well as the contact during printing (both across the substrate and from print to print)

• k > 1.5 → k ≈ 2.5

- Critical dimension (smallest structure/gap) should always be CD > R
- 3µm is possible everyday; 1.25µm only when you are lucky

Exposure: resolution exercise

- What is the effect of a 2µm edge bead on the resolution limit of i-line exposure (365nm) of a 2µm resist film in the case of contact printing, and proximity printing (proximity gap = 10µm), respectively?
- Contact printing:
- $R = 0.91 \mu m$ without edge bead (s=0 μm)
- R = 1.57 μ m with 2 μ m edge bead (s=2 μ m); almost 75% increase
- Proximity printing:
- $R = 3.01 \mu m$ without edge bead (s=10 μm)
- R = $3.27\mu m$ with $2\mu m$ edge bead (s= $12\mu m$); less than 10% increase
- Why does the gap still increase in proximity mode?

$$R = k \sqrt{\lambda \left(s + \frac{z}{2}\right)}$$

- s: gap between mask and resist
- z: resist thickness
- λ : wavelength of exposure light
- k: a constant, theoretically 1.5

Exposure: first print versus alignment

- First print: Exposure on a blank substrate. In a first print, the mask is often aligned to the flat of the substrate or chip
- Alignment: Using stage translation and rotation, the substrate is aligned to the mask

http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Pattern_Design

Exposure: alignment

 Using stage translation and rotation, the substrate is aligned to the mask

Alignment accuracy

• Manual alignment to $\pm 1\mu m$ is possible, but expect up to $\pm 3\mu m$

Misplacement in Y

Rotation

Run-out

Run-in

Remember to include tolerance in your design!

Misalignment

Accuracy depends on:

- Alignment mark design
- Operator experience
- Previous processing of substrate
- Equipment condition

2017

