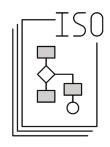


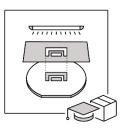
Agenda for TechForum 2022#1

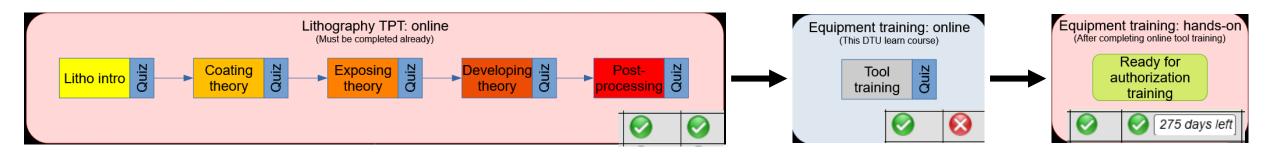
- Supply chain disruption
- Courses and lab access
- Lab expansions
- Facility closures
- New equipment



THE SURVIVAL KIT

TO COPE WITH SUPPLY CHAIN DISRUPTION


- Chemicals
- Photoresist
- Wafers
- Metals
- Spare parts
- Technician support
- Apply non-lean principles increase stock
- Substitutions



COURSES AND LAB ACCESS

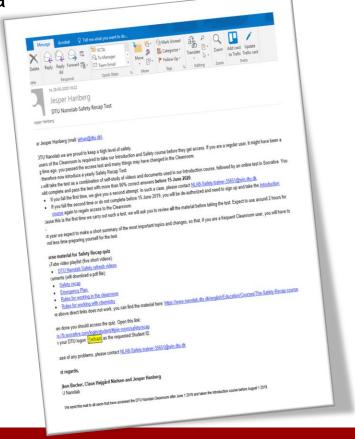
Litho TPT – new version on DTU Learn

To get full authorization on any lithography equipment, you must:

- 1. Complete the lithography TPT
- 2. Complete the online equipment training for the specific tool(s) you need
- Complete the hands-on authorization training in the cleanroom

When choosing:

- E-Beam Writer 9500 an additional e-beam TPT before practical training
- DUV Stepper send a mail to training@nanolab.dtu.dk

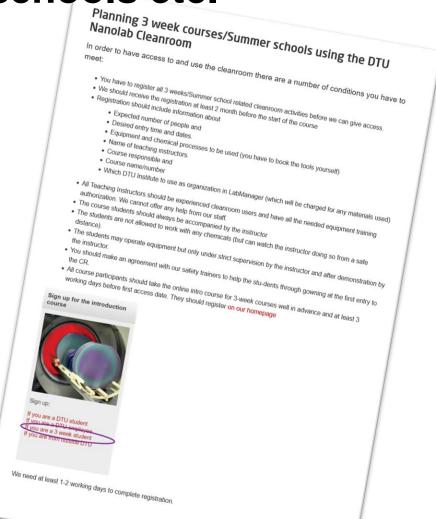

You sign up for the course through Nanolabs homepage from where you will be guided all the way

Annual safety update

Safety recap was done two years ago

 Annual update in 2021 postponed due to Corona

- New safety update/training planned for 2022
- Your safety knowledge for all types of facility access will be tested (Cleanroom, Microscopy, Basement 346, ...)
- The test will be online
- Currently working on the tests and to automate the process



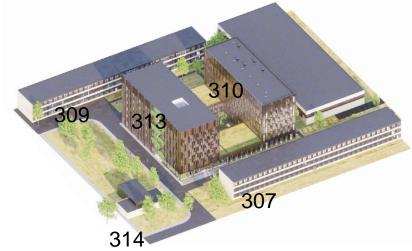
3-weeks courses, summerschools etc.

- Plan in good time (two months ahead)
- Follow the guidelines given in
 - https://www.nanolab.dtu.dk/About-DTU-Nanolab/FAQ/3weekCourse
 - (Nanolab homepage > About > FAQ)
- Please spread this information to colleagues and "Institutstudienævn"
- If you are late consequence may be that we deny access due to:
 - No room in gowning or CR for students
 - Machines not available
 - No time for registration or proper introduction of students

DTU Nanolab is low on staff in JULY

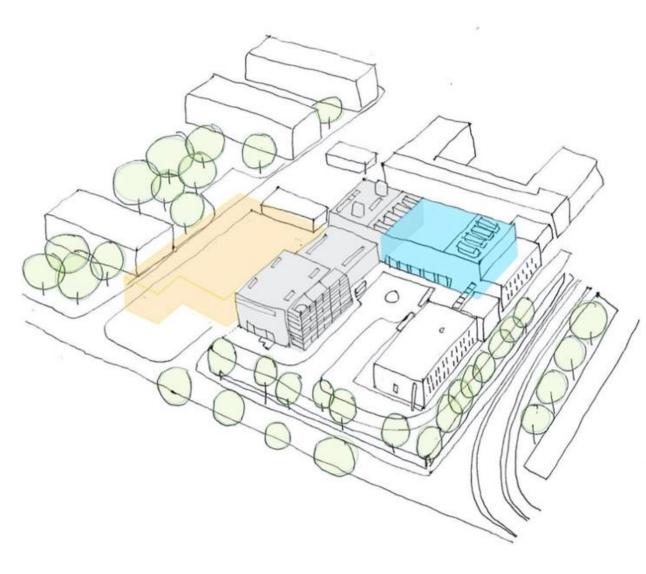
LAB EXPANSIONS

'Climate Challenge Laboratory' B313 update


(JABW)

Generic labs and offices

- Basement ready for sensitive instruments
- Building 313 is connected to 310
- Building site will occupy area between 307, 314, 309, and 310
- Building site from Nov. 1 2021 Oct. 1 2023



March 28th 2022 DTU Nanolab

Cleanroom Expansion bldg 346A - status

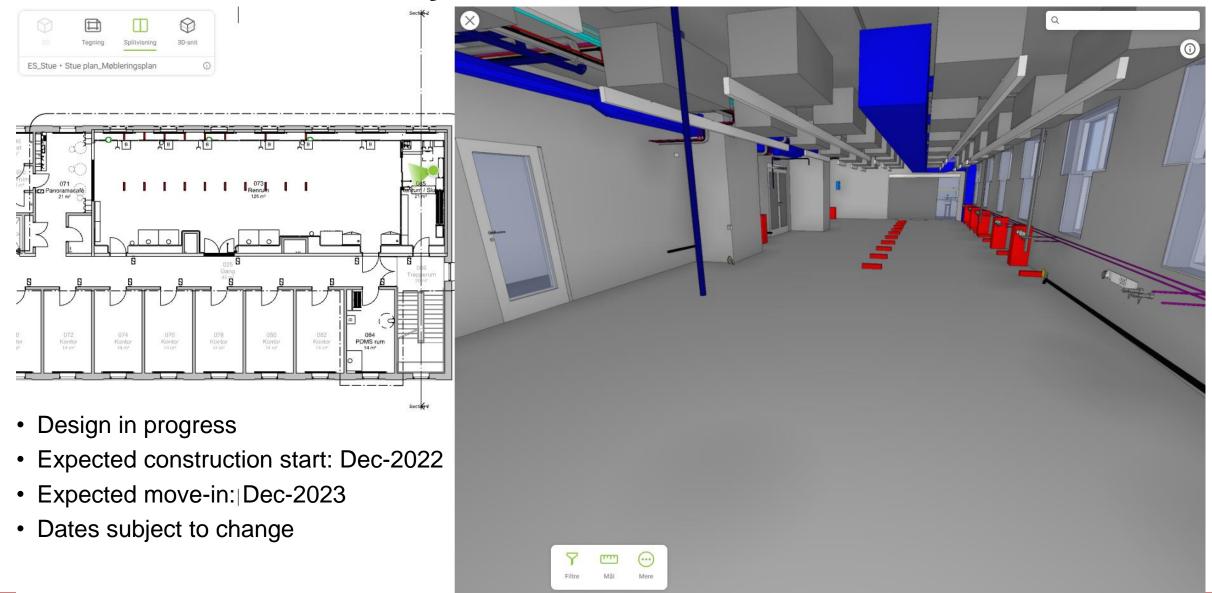
- No final approval
- Design study group
 - DTU Nanolab
 - -CAS
 - Consulting engineers and architects
- Many design constraints need clarification
- No clear building footprint
- No clear layout of interior
- Cleanroom area unknown
- Ballroom cleanroom
- Clean subfab
- Seamless integration with existing cleanroom

The PolyFabLab Vision

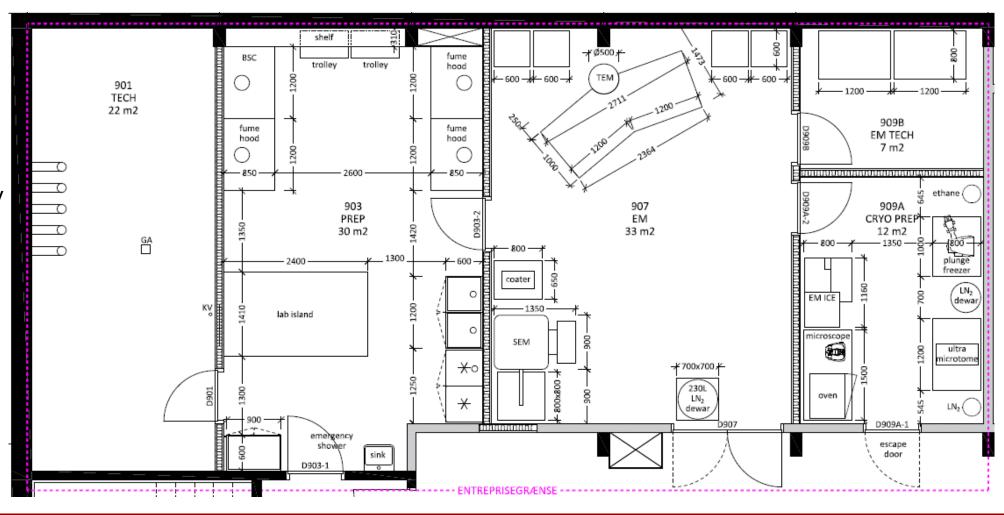
- Fill the gap between research labs and existing cleanroom facility
- Maximise flexibility, accessibility and visibility
- Showcase the processes to the world around us
- Rapid exchange of various tabletop and stand-alone equipment

Enable work within:

- Full soft lithopgraphy line with SU-8 litho and PDMS casting
- Polymer printing (3D resin print and 2-photon-polymerization)
- Chemical surface modification (plasma polymerization and Parylene)
- Ink-jet printing
- Polymer replication (Nanoimprint and roll-to-plate)
- Prototype equipment (Slot-die coating…)


Work supported financially by Novo Nordisk Foundation with 12 Mkr.

Grant number: NNF210C0068814


3D Model - PolyFabLab

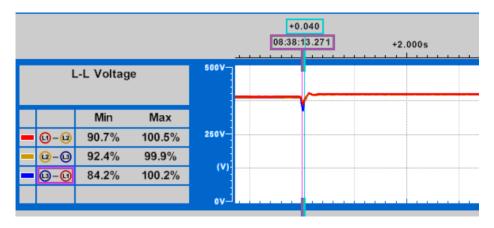
B307 basement Soft Matter Lab Sketch

- Soft Matter lab for:
 - Sample preparation
 - Cryo SEM and TEM
- Key requirements include:
 - Temperature stability1°C P-P/24hrs
 - Low vibration levels
- Lab area >100m²

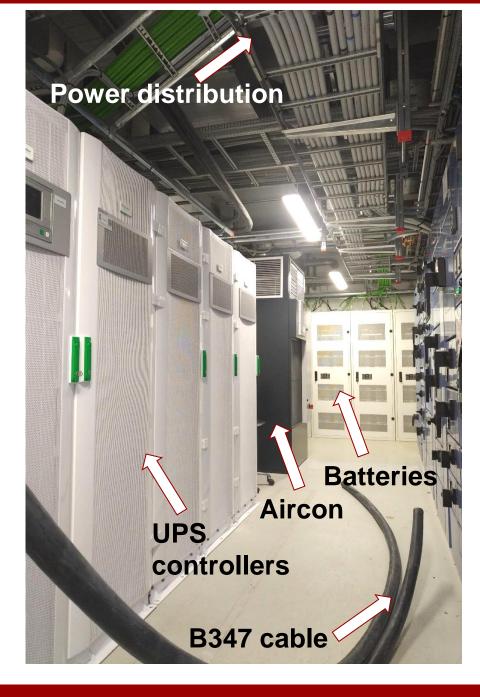
B307 basement Soft Matter Lab

Project tender & contracting:
 Now-April

- Lab construction:
 Q2-Q3, 2022
- Project completion:
 Q3, 2022



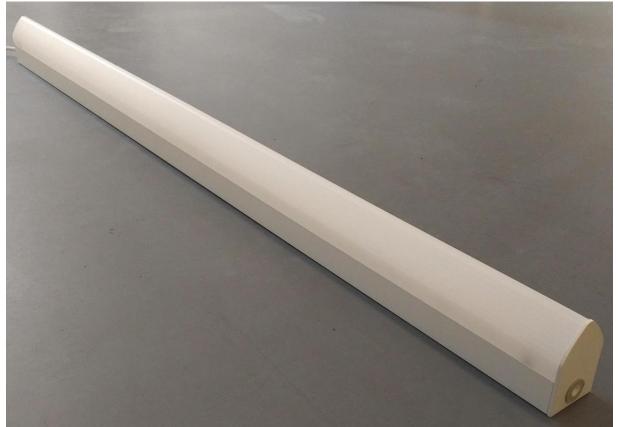
FACILITY CLOSURES AND PROJECT UPDATES



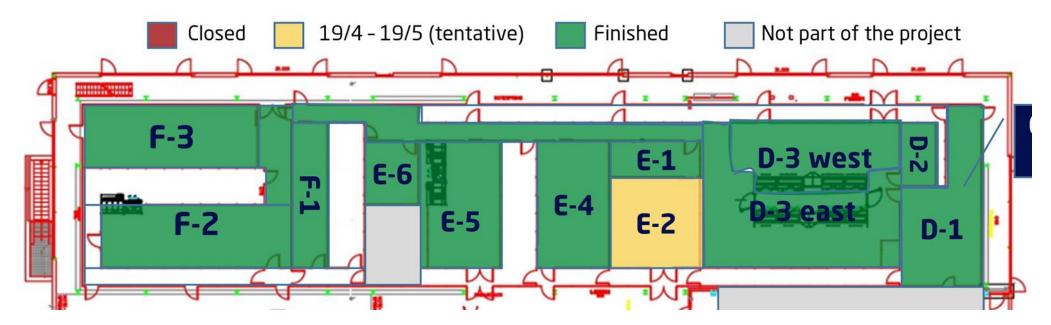
B346 UPS update

- B346 now protected against power glitches < 20 min
- 65 min power cut in Jan-2022: Capacity verified
- 9 known glitches "caught" since Jan-2022.
- No known damages the system works

- Remaining: Re-route safety systems power
 - One day's closure of B346 Date unknown
- B347 will also be connected to the UPS system
 - May require closure of B346



LED installation


- Change from fluorescent to LED light in entire cleanroom (old and new)
- Lower power consumption
- Further power saving: Turn off light in unused areas
- Original plan: Simultaneous FFU & LED change
- But: LED 9 months delayed
- Project start around May/June 2022
- 2-4 days closure of each room.
- Schedule negotiations with contractor in progress
- Time schedule will be available at
- https://sites.dtu.dk/ffunanolab

FFU exchange

- All rooms finished except e-beam room (E-2)
- Finished rooms: Clean & low noise
- Power saving: FFU rampdown when nobody in cleanroom
- FFUs in E-2 will be changed together with LED light
- E-beam room will be out of service for 7 weeks (!) time schedule pending
- New FFU power board: New cleanroom (D, E and F) closed for ca. 1-2 days (dates unknown)
- Time schdule will be available at https://sites.dtu.dk/ffunanolab

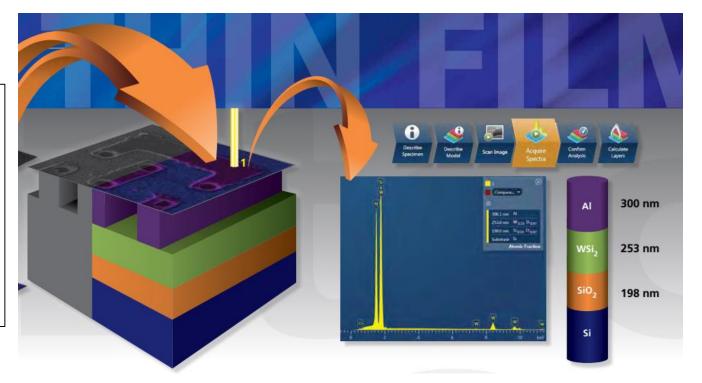
March 28th 2022 DTU Nanolab Techforum 2022 #1

18

B346 Shutdown overview

- Re-route safety systems to new UPS: Close B346 one day date unknown
- Connect B347 to new UPS system: Potential closure p.t. unknown
- FFU & LED change in e-beam room: E-2 closed 7 weeks
- LED change: Each cleanroom bay closed 2-4 days
- New FFU power board: New cleanroom (D, E & F) closed for 2 days
- Few of these closures can be bundled

IDEAS FOR NEW CAPABILITIES


LayerProbe Software for thin-film EDX in our SEMs (Oxford Instruments)

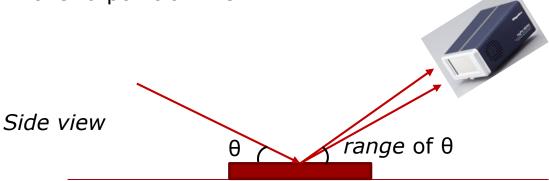
https://nano.oxinst.com/products/aztec/layerprobe#product-information-tabs

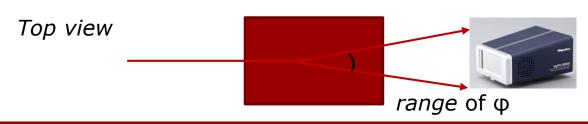
This is a **software** tool for EDX analysis of thin films on a substrate (rather than bulk materials).

It can be added as an option to the existing AzTec software used in most (all?) SEM microscopes with EDX capability at Nanolab.

- Advantage #1: it gives the thickness of the film
- Advantage #2: it corrects for the effect of the substrate on the EDX spectra, and therefore gives a better estimation of the composition of the film.

21


This analysis mode is quite standard in XRF (x-ray fluorescence), but for some reason is not widespread in EDX

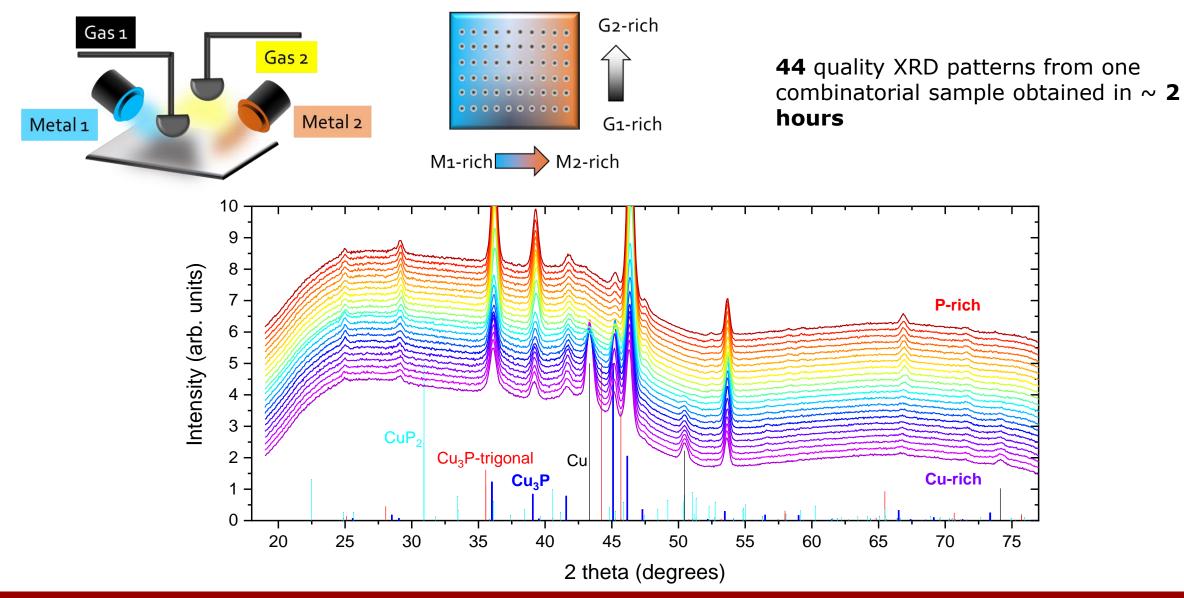


HYPIX-3000 Hybrid pixel array detector (Rigaku)

https://www.rigaku.com/node/424

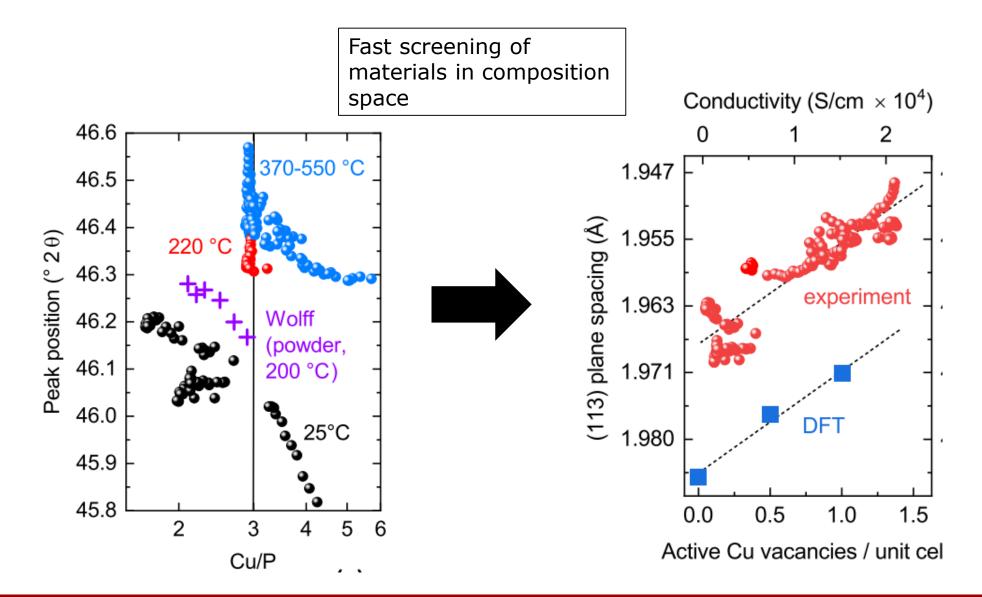
- A 2D detector that can be used on our Rigaku SmartLab XRD and can also work as a 1D and 0D detector.
- Advantage #1: diffraction information on a 2D plane
- Advantage #2: <u>Faster</u> "standard" theta-2 theta measurement, because you integrate the data from a large area instead collecting it over a point or line

22



Result

Applications (own results)



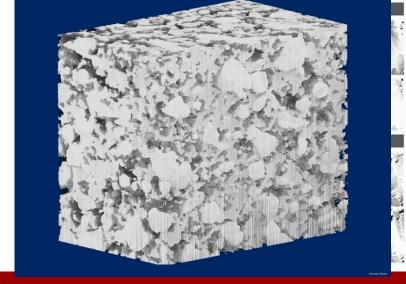
March 28th 2022 DTU Nanolab Techforum 2022 #1

24

Applications (own results)

NEW EQUIPMENT

NEW Dual Beam Helios Hydra G5 (JABW)


Purpose/specs:

Addition current Helios G1

- Multi Gas Plasma FIB (Xe,N,O and Ar)
- Automated TEM Lamella Prep
- Automated Atom Probe Tomography
- Monochramated E Beam for sub nm resolution down down to 500eV

Status: Instrument installed. After some hick-ups in the beginning, the training has started and the instrument is released.

larch 28th 2022

DTU Nanolab

Techforum 2022 #1

angle Ω /

0.2

FlatQUAD detector

Purpose/specs: Maximum Efficiency in X-ray Detection

Solid angle and OCR as a function of the detector-sample distance

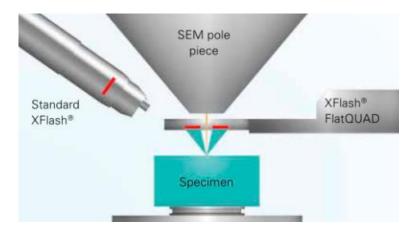
Distance / mm

Solid angle Ω

120

100

80


60

40

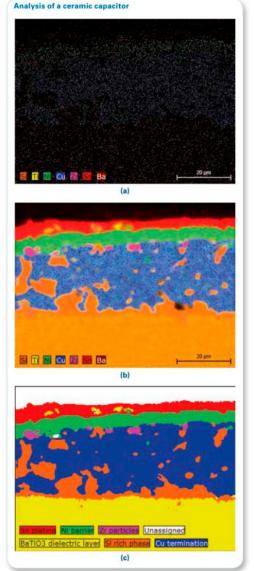
20

10

• OCR

To be installed in Helios microscope 314

Ordered, but delivery date unknown 🕾


(a) Map of a multilayer ceramic capacitor containing Si, Ti, Ni, Cu, Zr, Sn and Ba obtained with a conventional EDS detector, showing very poor statistics. Size 512 × 384 pixels, HV 10 kV, acquisition time 170 s, input count rate (ICR) 260 cps, 41,000 counts total. (b) Same specimen mapped under identical conditions using the XFlash® FlatQUAD, ICR 28,000 cps, 4,800,000 counts total. (c) Results obtained with the XFlash® FlatQUAD can be used for further processing, e.g. chemical phase analysis as shown here.

QUANTAX FlatQUAD is an EDS microand nano-analysis system that performs where conventional systems reach limitations:

- Extremely fast mapping at highest output count rate, using only moderate beam currents
- Analysis of beam-sensitive materials at low to extremely low beam currents (< 10 pA), e.g. of biological or semiconductor samples
- Investigation of samples with topography, avoiding shadowing effects
- Analysis of nanoparticles and nanostructures at low kV and highest magnification
- Measurement of thin samples (e.g. TEM lamellae) and other specimens with low X-ray yield.

Fast mapping

QUANTAX FlatQUAD can operate at up to 100x the speed of conventional SDD-based EDS systems. This enables map acquisition with excellent statistics in seconds without compromising SEM performance parameters.

28

RTP (Rapid Thermal Processing) system: Jipelec JetFirst 200C

Purpose/specs:

Replacing current Jipelec system

- Cold-wall system (water cooled stainless steel)
- Temp range: ambient to 1000 C (1200 C for 1 min)
- Temperature control: TC & Pyrometer
- 2 (N2 & Ar) + 1 gas lines (MFCs) + purge line
- Dry pump (nXDS6i scroll)

- "Fixed" susceptor set-up: Better temp-control (TC) + "easier" usage
 BUT restrictions (gas flow and max temp ramping)
- Contact us (thinfilm@nanolab.dtu.dk) for new processes
- old RTP is leaving soon

6"/8" Oxidation Furnace (E1) – retrofit

Purpose:

- Furnace tube for 8" / 6" / (4") dry-wet oxidation
- Up to 50 wafer batches
- Accepted November 2021 Released

Results Wet Oxide (acceptance test):

3 runs (x50 wafers): Peak-to-peak: 1.3%

Wafer-to-wafer: 0.35%

Run-to-run: 0.64%

Breakdown voltage in test: 0.85 V/nm (**dry oxide**)

Candidate: Carl Zeiss GeminiSEM 560

Next SEM in 346?

Status:

- A set of challenging samples has been collected for evaluation at demos:
 - Profile inspection: ALD deposited multilayers (down to 5 nm) on Si and SiO₂
 - Tilted top view: Nanostructures in beam sensitive resists on fused silica wafer
 - Profile inspection: Optical gratings in quartz
 - Tilted top view: Nanostructures on entire surface of 150 mm wafer
- **Demos** at Thermofisher and Carl Zeiss have been planned, Hitachi soon to follow...
- **EU tender** this summer signed contract by the end of the year.

Several top-of-the-line SEM's will be considered and evaluated.

Features:

- Sophisticated in-column detectors: The detectors have seen a lot of development since the Supra models. The column now hosts detectors with energy-selective filtering to reveal subtle material contrasts – from both secondary and backscattered electrons.
- Greatly improved low vacuum modes: Local charge compensation that enable the use of incolumn detectors (usually reserved for high vacuum) of secondary and backscatter electrons thus dramatically improving the imaging capabilities on non-conducting samples

31

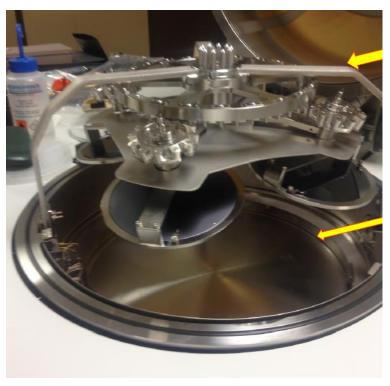
- STEM detector: Will be considered.
- Also: A variety of automated features, beam deceleration...

Next E-Beam Evaporation System?

Candidate: FC2000 from FerroTec-Temescal

32

Features in general


- Robust & reliable system easy maintenance
- High flexibility (substrate sizes)
- Many-pocket (>6) crucible
- High throughput loadlock
- High-uniformity deposition
- Low sidewall deposition (for lift-off)

Focus points

High-Uniformity Lift-off Assembly (HULA substrate holder)

- ensures that wafers spend equivalent periods in high- & low-density regions of the vapor cloud + low sidewall deposition

Many-Pocket system (10 x 25 cc pockets crucible)

- ensures high flexibility on material selection at any time

Dicing saw (JEHAN)

- Dicer Disco DAD 3241
 - for wafers up to 200 mm
 - Silicon, (Glass/quartz, ...)
 - Touch screen interface
 - Many advanced features but easy to work with
- Wafer cleaner Disco DCS 1441 (cleaning after dicing)
 - High pressure and Atomizing Nozzle water cleaning
- Various accessories
 - Tape mounter
 - UV tape release
- For training: e-mail training@nanolab.dtu.dk

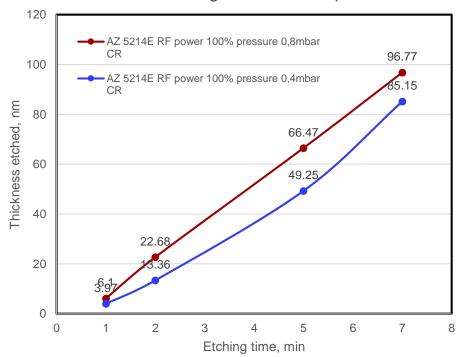
Thomas P and Disco technician Brian

Plasma Asher 3: Descum

From Packlab -> Cleanroom

Diener Plasma asher Pico

Sample size: up to one 4" wafer places horizontal in chamber


Gas 1: Oxygen

Gas 2: N2

Plasma power: 0-100% (0-100Watt)

Process time: 0:01-99:59 minutes

AZ 5214E etchning with different pressure

For training: send training request to training@nanolab.dtu.dk

For more test results: take a look at labadviser

μTransfer printing

- Aligned transfer of coupons from one wafer to another.
 - Accuracy like optical aligner.
 - Single more accurate than many.
- Good for moving expensive/incompatible material to larger wafers (silicon/glass etc)
 - Processed III-V semiconductors (or pieces).
 - Processed CMOS chips
 - LiNbO3, c-Si, BaTiO3, ???, ???
- Purchased in cooperation with DTU Photonics.
- Expected delivery in September 2022

(a) Simultaneous transfer of multiple coupons using elastomer stamp Source III-V wafer with processed devices Target SiPh wafer (b) 2. III-V Device Layer Patterned device Patterned device Patterned release layer Release layer Patterned release layer Substrate Substrate Substrate Stamp Stamp Patterned device Printed device Substrate Substrate Silicon

Raith e-Line e-beam writer moves to cleanroom

- Originally installed in B314
- Has been moved into cleanroom
- Waiting for installation and Raith service
- An alternative to the JEOL 9500
- Expected operational June 2022

End of Presentation

- The supply chain is not as robust as it used to be, measures are taken to stabilize the operation
- Several restructuring projects: soft matter lab, packlab -> PolyFabLab
- Major facility upgrades/replacements cause closures and inconveniences, FFU
- Slides will be available online at LabAdviser

