Lithography Tool Package

2. Spin Coating

Leif Steen Johansen and Thomas Anhøj

DTU Danchip National Center for Micro- and Nanofabrication

Outline

1. Introduction

 Process steps in UV lithography

2. Spin coating

- Resist composition
- Pre-treatment
- Principle
- Softbake
- Spin curve

3. Exposure

- Hardware
- Process parameters
- Resolution
- Alignment

4. Development

- Principle
- Effects
- Resist tone, photochemistry, and contrast
- 5. Post-processing and

characterization

- Post processing
- Characterization methods
- 6. Process effects and examples
 - Process effects
 - Real life process examples

Spin coating: step by step

- Substrate
- Pre-treatment

- Resist deposition
- Spinning
- Softbake
- Resist film on substrate

To ensure proper wetting and adhesion of the resist to the substrate surface

ዮዮዮዮዮዮዮዮዮዮዮ

or)

Before coating: substrate pre-treatment

- Also called *priming* or *adhesion promotion*
- Purpose:
 - To obtain proper wetting properties of the resist on the substrate
 - To ensure good adhesion of the resist to the substrate surface

	Substrate types	Shelf life	Comments
HMDS	Si, SiO ₂ , SiN, glass	Several days	Thick dielectrica and glass substrates require (additional) dehydration before HMDS priming
BHF	Si	~20 min	Only Si
Dehydration	Si, SiO ₂ , SiN, glass	minutes	Recommended for SU-8
AP-3000	Si, SiO ₂ , SiN, glass, III-V	?	Not a standard process

Before coating: contact angle

- Measuring the contact angle of water to the substrate can be used to characterize the substrate surface prior to coating
- Drop shape analyzer is used
 - Water droplet on a substrate
 - The contact angle is obtained through image analysis
- Optimal contact angle depends on resist and process, but is typically

Pre-treatment: HMDS vapour priming

- 1,1,1,3,3,3 Hexamethyldisilazane (HMDS)
- Process:
 - Substrate is heated in vacuum to dehydrate
 - Substrate is exposed to HMDS vapour \rightarrow OH groups are replaced by Si(CH₃)₃
 - Vapour is pumped out
- Some spin coaters have in-line HMDS priming

Pre-treatment: silicon priming by HF dip

- Remove native oxide and passivate Si surface
- Process:
 - Substrate is immersed in HydroFluoric acid for 20–30s
 - Native oxide is etched
 - Dangling silicon bonds are terminated by hydrogen atoms
 - Rinsed in water and dried
 - Desorption of H leads to reformation of native oxide

More hydrophobic, $\theta \approx 70^{\circ}$

Hydrophilic, $\theta < 10^{\circ}$

Photoresist: composition

- Resin: Monomers or polymer chains of varying length (solid at RT)
- **Photo-active component** (PAC): Reacts with UV-light during exposure and changes the resin
- Solvent (~70%): Dissolves the resin in order to enable coating
- Thermal stability
 - Good up to $\sim 100^{\circ}$ C
 - At higher temperatures: reflow (rounding), embrittlement, burning
- Chemical resistance
 - Acid: good
 - Base: poor (develops)
 - Solvent: bad (dissolves)

UV Resist	MiR 701	nLOF 2020	5214E	4562	SU-8
Thickness	1.5–4 µm	1.5–4 μm	1.5–4 µm	5–10 µm	4–200 µm

Spin coating: basic principle

- The wafer is held by vacuum on a motorized chuck
- Photoresist is dispensed on the wafer
- The wafer is rotated, spreading the resist across the wafer
 - Spin speed is typically 2000-5000 rpm
 - Most of the resist (ca. 95%) is spun off the wafer
- A uniform layer remains on the wafer

Spin coating: phases during coating

- Modelling is a complex fluid dynamic problem
- Local phenomena (exhaust, temperature, etc.) can affect film thickness
- In practice, engineers rely on empirical formulae and spin curves

Coating imperfections

a) "Comets"

Usually caused by particles on wafer or in resist

b) Non-uniform resist spreading

Poor substrate wetting or very high viscosity (skin)

c) Uncoated areas

Too small dispense volume, not in the centre, or chuck not level

d) Structured substrates

causes comet-like defects, and in some cases uncoated areas

AR-P 6200 (CSAR) spin coated on substrate with pattern etched ~1 µm into Si

Spin coating: edge bead

- At low spin speeds and/or highly viscous resists, the surface tension of the resist starts to compete with the centrifugal forces pulling the resist off the wafer edge, leading the formation of a
 - "bulge" at the wafer edge - known as an *edge bead*
- Typically the edge bead height is comparable to the resist thickness and it may be several mm wide
- Not a problem for standard UV resists spin coated on wafers
- Non-circular substrates exhibit more edge bead
- Edge beads are usually removed with solvent
 Edge Bead Removal (EBR)
- Edge beads can in some cases be reduced by careful design of the spin coating recipe, or exposure
- Edge beads may also be reduced by spin coating under a co-rotating cover (Gyrset[®]) –a saturated solvent environment and less turbulence

After coating: softbake

- Post-coating bake = 'softbake'
- Soft bake is performed in order to drive out solvent from resist film
 - Increase mechanical stability of the resist
 - Prevent resist sticking to mask

- Softbake is usually performed on a hot plate
 - Contact baking: Wafer in contact with hot plate (vacuum)
 - Proximity baking: Wafer kept above hot plate (e.g. 1 mm)
- Increasing softbake temperature yields:
 - Thinner film (more solvent evaporates)
 - Decreased photosensitivity (thermal decomposition of photo-active) component)
 - >120 °C: risk of crosslinking, making the resist insensitive to exposure

Spin coating: the spin curve

• In spin coating, the final film thickness depends

strongly on:

- viscosity
- spin speed
- spin time
- exhaust

less on:

- spreading
- acceleration

but not on:

dispensed resist volume(as long as there is enough)

A spin curve is only valid for constant viscosity, spin time, softbake, etc.
 – only accurate for one particular equipment in one particular cleanroom

Spin coating: Modelling spin curves

Fitting spin curves has yielded the following empirical formula for the final film thickness:

- z: film thickness
- η : viscosity
- C: solids concentration
- ω : spin speed
- *K*, *α*, *β*, and *γ*: constants

Adapted from Marc J. Madou "Manufacturing Techniques for Microfabrication and Nanotechnology" 2011.

- K is a calibration constant, and is commonly combined with η , C, β , and γ into a resist, process, and equipment specific calibration constant, K'
- For UV resists with medium-low viscosity $\alpha \cong 0.5$, i.e.

$$z = K' \frac{1}{\sqrt{\omega}}$$

 $z = K \frac{C^{\beta} \eta^{\gamma}}{\omega^{\alpha}}$

- For thicker resists (e.g. SU-8 2075), α approaches 1
- For thinner resists (Deep-UV and E-beam), lpha < 0.5

Spin coating: exercise

• Spin coating of AZ MiR 701 at 2500 rpm yields a film thickness of 2.1 μ m. Estimate the spin speed needed to obtain 1.5 μ m.

•
$$K' = z\sqrt{\omega} \Rightarrow z_1\sqrt{\omega_1} = z_2\sqrt{\omega_2}$$

• $\omega_2 = \frac{z_1^2}{z_2^2}\omega_1 = \left(\frac{2.1 \,\mu m}{1.5 \,\mu m}\right)^2 \times 2500 \,rpm = 4900 \,rpm$

- z: film thickness
- ω : spin speed
- K': calibration constant

Alternatives to spin coating

- Spray coating
 - Structured samples may be coated conformally
 - Non-circular samples
 - Bulky samples

- More exotic coating methods:
 - Dip coating
 - Roller coating
 - Curtain coating
 - Electrodeposited resist (requires conductive substrate)
 - Dry resist film \rightarrow Roll lamination
- Possible at DTU Danchip

